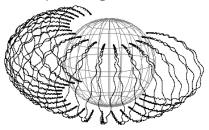
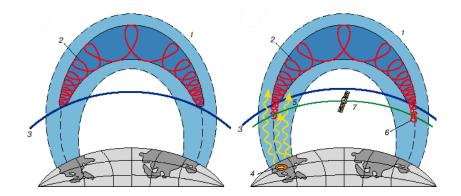
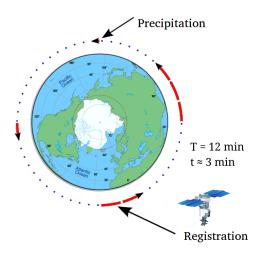

Study of spatial and energy characteristics of relativistic electron bursts in magnetosphere with robust methods

T. Zharaspayev, S. Aleksandrin, S. Koldashov


National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

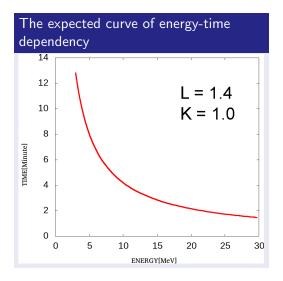
ICCPA - 2015, Moscow


Introduction


Charged particle movement in dipole magnetic field

Model of particle burst formation

Precipitated paritcles registration on board the satellite



Cloud of precipitated paritcles may be crossed by satellite in random moment, registered burst parameters would vary a lot.

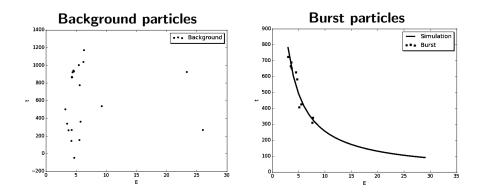
イロト イポト イヨト イヨト

4/15

Model of longitudal particle drift

$$\begin{split} \tau &= \frac{88(1+E/E_0)}{2+E/E_0}\frac{\kappa}{LE},\\ K &= 1.25-0.25\cos^2\lambda_m\\ \lambda_m - \text{ geomagnetic latitude}\\ \text{of mirror points}\\ E &- \text{particle energy},\\ E_0 &- \text{rest energy} \end{split}$$

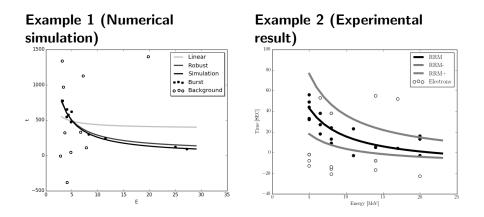
(人間) シスヨン スヨン


5 / 15

Experiments on orbit - ARINA and VSPLESK

Parameter		Value
Geometrical		10cm ² sr
factor		
Aperture		\pm 30degree
Energy ranges	protons	30-100MeV
	electrons	3 – 30MeV
Energy resolution	protons	10%
	electrons	15%
Time resolution		100ns
Mass		8,6kg
Power		13,5W
consumption		

Numerical model of longitudinal particle drift

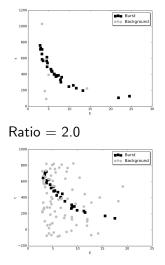

Linear and Robust methods

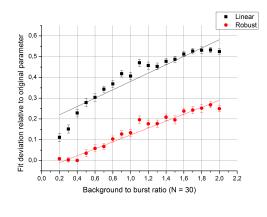
$$R_{method} = \sum_{i=1}^{n} w_i \cdot \frac{(t_i - t_{dr}(E_i, \Delta \lambda))^2}{\sigma_i^2}$$
(1)
Linear Robust

$$w_i = 1.0$$
 (2) $w_i = \frac{1}{1 + e^{-(\beta_0 + \beta_1 d_i)}}$ (3)

$$d_i=\sqrt{(E_i-E_{min})^2+(t_i-t_{dr}(E_{min},\Delta\lambda))^2}$$
 (4)

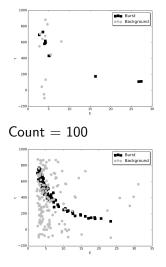
Examples


9/15


э

<ロ> <同> <同> < 回> < 回>

Background to burst ratio


 $\mathsf{Ratio}=0.01$

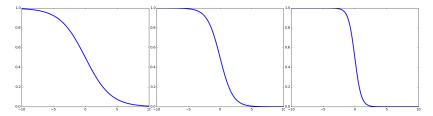
Number of events in burst

 $\mathsf{Count} = 10$

Conclusion

- The analysis of two methods of longitudinal distance determination of locally precipitated particles was conducted.
- Methods perfomance for various burst sizes and burst to background ratios was analyzed.
- Robust regression method is significantly more precise in comparison with linear method.
- Using burst to background ratio and particle number estimations from ARINA experiment $(N \sim 30, R \sim 0.5 \div 1.0)$ the error of robust method is around $5 \div 10\%$.

THANK YOU!


Weight heuristics (Inverse distance)

$$w_{i} = 1 - \frac{d_{i}}{\max(d_{i})}$$
(5)

・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ ()
14/15

Weight heuristics (Logistic function)

$$w_i = \frac{1}{1 + e^{-(\beta_0 + \beta_1 d_i)}} \tag{6}$$

