Technology for reduction of ⁸⁵Kr content in Xe

Simakov Grigoriy

SSC RF ITEP of NRC "Kurchatov institute"&NRU MIPT (SU)

Moscow, October 7 2015

The WIMP search experiments of next generation Xe detectors require extremely low levels of 85 Kr: < 10⁻¹² of natural Kr in Xe

```
<sup>85</sup>Kr in natural Kr: ~ 2.5 × 10<sup>-11</sup>
```

Traditional way:

direct purification of Xe from Kr

Alternative way:

depleting of ⁸⁵Kr in Kr

then

Adding to Xe, then purification to the same level of Kr, but now less radioactive

We need to know the real activity of ⁸⁵Kr in the Kr which is added to Xe!

Simple illustration to the depletion method

Test chamber for Kr activity measurement

Test cell and scheme of measurement

PMT FEU-181 MELZ (Moscow)

VUV-sensitive: MgF₂ windowed multialkali photocathode

can operate at cold (down to LN_2 temp.)

LKr emission – 147 nm

Decay time ~ 100 ns

Typical waveform of scintillation from LKr

1-st measurement with 25-y old Krypton

 $56 \pm 5 \text{ Bq/g}$ (of Kr) is obtained from measurements at different shaping time and gain.

Theoretical β-spectra from *bama.ua.edu/~andreas/ps_files/ beta.pdf*

This corresponds to 280 ± 25 Bq/g back in 25 years (to 1990; T_{1/2}=10.756), greater by a factor 5 than now

280 ± 25 Bq/g corresponds to 1.155 ± 0.1 Bq/m³ of air It is in quite good agreement with:

S. Lindemann. Purification and detection of inert gases using miniaturized proportional counters.

The present day activity of the air due to ⁸⁵Kr is 1.45 Bq/g, practically stable

This corresponds to 364 Bq/g for the present day produced Krypton

Thus, the activity of the measured Krypton sample is less than the activity of the present day Krypton

by a factor of 6.3

Centrifuging may deplete ⁸⁵Kr by a factor of ≥1000

From V. V. Kuz'minov, V. M. Novikov, A. A. Pomanskii et al., Radioactive85 Kr in krypton enriched with a light isotope. Atomic Energy, 73 (1992), Issue 6, p. 1010.

Thus, we may have for ⁸⁵Kr a depletion factor of at least 6300 with respect to ⁸⁵Kr in the present day Krypton!

In Xe by "Chromium", Russia (99,99999 %), Kr content is 5 ppb

or 5 mg of Kr in 1 ton of Xe

adding 100g of depleted Kr to 1 ton of Xe and purification down to the same 5 ppb level will give reduction by a factor of 6300, i.e. equivalent to 0.8 ppt level of the present day Krypton in the Xenon by "Chromium"

The ppt level is well controllable by the Coldtrap/RGA LUX system:

From C.Hall talk at LXe MEPhI & LZ 2014 meeting

The LUX Xe has been purified down to 4 ppt level of Kr with ⁸⁵Kr/^{nat}Kr ~ 2·10⁻¹¹ (how old is it? 2.5·10⁻¹¹ is in the present day Kr)

This degree of purification will be equivalent to ~ 0.65 ppq level of the present day Krypton in Xenon

CONCLUSION

We've assembled a test cell for measurement of Kr betaradioactivity and performed measurements with the 25-y old sample of Kr

The measured radioactivity of the 77-g LKr sample is in a good agreement with other data

 With the use of the 25-old Kr and depletion factor of 1000 (pessimistic), the LUX purification system may achieve ~ 0.65 ppq equivalent level of the present day Krypton in Xenon