Acknowlegments

3-body dynamics

Chiral extrapolations

(日) (圖) (E) (E) (E)

Conclusions

1/13

Chiral extrapolation of the X(3872) binding energy

A.V. Nefediev

ITEP, MEPhl, MIPT

The International Conference on Particle Physics and Astrophysics October 5-10, 2015, Moscow, Russia

Acknowlegments

I would like to gratefully acknowledge:

- Kind invitation of the Organising Committee to participate in this conference and to present this talk
- Collaboration with colleagues from Forschungszentrum Juelich, Bonn Univ., and Bochum Univ. (Germany):

V.Baru, E.Epelbaum, A.Filin, C.Hanhart, U.-G.Meißner

• Financial support from the Russian Science Foundation (Grant No. 15-12-30014)

X(3872) as a typical near-threshold state

$$M_X = 3871.68 \pm 0.17 \text{ MeV} \approx m(D^0) + m(\bar{D}^{*0})$$

$$M_{D^0} + M_{\bar{D}^{*0}} - M_X = (0.12 \pm 0.26) \text{ MeV}$$

 $\Gamma_X < 1.2 \text{ MeV}$

(ロ)、(部)、(目)、(目)、(目)、(の)への 3/13

Observation of X(3872)

• Observation of the X(3872) in the mode

$$B^+ \to K^+ X \to K^+ \left(\pi^+ \pi^- J/\psi \right)$$

(Belle 2003, CDF, DØ, BABAR 2004-2006, LHCb 2013) • Observation of the X(3872) in the mode

$$B^+ \to K^+ X \to K^+ \left(\pi^+ \pi^- \pi^0 J/\psi \right)$$

(Belle 2005, BABAR 2010)

 \bullet Observation of the X(3872) in the mode

$$B^+ \to K^+ X \to K^+ \left(D^0 \bar{D}^0 \pi^0 \right)$$

(Belle 2006, BABAR 2007)

• Studies of the X radiative decays (large branchings!)

$$X \to \gamma J/\psi$$
 $X \to \gamma \psi'(3686)$

(BABAR 2008, Belle 2010/2011)

イロン イロン イヨン イヨン 三日

Conclusions from the theoretical analysis

- X(3872) is a bound state generated dynamically by a strong coupling of the genuine charmonium χ_{c1}' to the $D\bar{D}^*$ hadronic channel
- \bullet Admixture of the $c\bar{c}$ charmonium in the w.f. is $\sim 50\%$
- X(3872) is bound by short-range forces, one pion exchange (OPE) and related three-body dynamics playing an important role for the X properties

One pion exchange in X(3872)

$$D_3(\boldsymbol{p}, \boldsymbol{p}') = \left(E_D(\boldsymbol{p}) + E_D(\boldsymbol{p}') + E_\pi(\boldsymbol{p}_\pi)\right) - (m_* + m + E)$$

$$V_{\text{OPE}} \propto \frac{p_{\pi}^2}{p_{\pi}^2 + \mu^2} \mathop{=}_{p_{\pi} \to \infty} O(1)$$

Therefore OPE in X(3872) contains short-range physics which results in divergent loops

$\ensuremath{\mathsf{EFT}}$ approach to the X

• Short-range interaction (including the short-range part of OPE) is described by a constant contact term C₀

 $V_{\rm full} = C_0(\Lambda) + V_{\rm OPE}^{\rm reg}(\Lambda)$

• The contact term is fixed to generate X as a bound state with a given binding energy $E_{\cal B}$

$$rac{\partial E_B}{\partial \Lambda} = 0 \quad \Longrightarrow \quad C_0(\Lambda) ext{ is fixed}$$

- Relativised approach is renormalisable in LO
- The full dynamical relativised problem is solved for V_{full}:
 - Three-body dynamics included
 - Unitarity preserved
 - Renormalisation group equation satisfied
 - Renormalisable approach

X(3872) on the lattice

Lattice predictions for $M_X - m_{D^0} - m_{D^{*0}}$:

Prelovsek, Leskovec,	$-(11\pm7)$ MeV
PRL 111 , 192001 (2013)	
Fermilab Lattice and MILC Collabs,	$-(13\pm 6)$ MeV
arXiv:1411.1389 [hep-lat]	
Padmanath, Lang, Prelovsek	$-(8\pm15)$ MeV
arXiv:1503.03257 [hep-lat]	$-(9\pm8)~{\rm MeV}$

Experimental value:

$$M_X - m_{D^0} - m_{D^{*0}} = -(0.12 \pm 0.26) \text{ MeV}$$

Thus lattice simulations systematically predict X(3872) bound stronger than observed experimentally and it is a challenge for the theory to provide an extrapolation formula for the E_B to proceed from $m_{\pi} \simeq 300$ MeV to $m_{\pi} = 140$ MeV

8/13

イロト イポト イヨト イヨト

Leading order prediction for the \boldsymbol{X} binding energy

At LO dependence on m_{π} comes only from the long-range OPE and from renormalised selfenergy loops \implies Prediction!

Conclusions:

- 3-body effects are important
- In LO binding energy decreases fast with the increase of m_π
- To arrive at stronger bound state one has to proceed to NLO

- 3

3-body dynamics

10/13

Contact interaction "running" law

$$C_0(\Lambda, m_\pi) = C_0^{\rm ph}(\Lambda, m_\pi^{\rm ph}) + \delta C_0(\Lambda, m_\pi)$$

What do we do with $\delta C_0(\Lambda, m_{\pi})$?

• Approach #1: $\delta C_0(\Lambda, m_\pi)$ is prescribed using a suitable model; E_B and $\partial E_B / \partial m_\pi$ at the physical point are treated as input

Outcome — prediction for $E_B(m_\pi^{\rm unph})$ to compare with lattice simulations

• Approach #2: Lattice data are used to fix $E_B(m_{\pi}^{\text{unph}})$ for two values of m_{π}^{unph} Outcome — extrapolaton formula to m_{π}^{ph}

< ロト < 回 > < 回 > < 回 >

Approach #1

- Dashed-dotted line: pionless theory
- Dashed line: natural assumption $(\partial E_B/\partial m_\pi^2)|_{m_\pi = m_\pi^{\rm ph}} = E_B^{\rm ph}/{m_\pi^{\rm ph}}^2$
- Red band: relativised approach $(\Lambda o \infty)$ with resonance saturation
- Black band: nonrelativistic approach ($\Lambda \in [500,700]$ MeV) in heavy-meson formulation
- Blue dot with error bar: lattice result by Prelovsek & Leskovec'2013

Approach #2

Red band — the full calculation with dynamical pions in NLO Blue band — static OPE

Conclusions

- Three-body dynamics is important in the X(3872)
- Lattice predictions of stronger bound X for unphysical pion masses is compatible with the X formed by short-range forces
- Extrapolation formula from uphysically large pion masses to the physical point is nontrivial and it is strongly influenced by the three-body dynamics
- Simulations of the X on the lattice may provide valuable information on binding mechanisms in it
- Suggested approach supports generalisations to other near-threshold states