Introduction	Production	Transportation	Characterization	Source purity	Conclusion

The $^{144}\mathrm{Ce}$ source

Mathieu DURERO on behalf the Borexino/SOX collaboration mathieu.durero@cea.fr

CEA-Saclay, IRFU,SPP

International Conference on Particle Physics and Astrophysics, Moscow, 06/10/2015

Introduction •	Production	Transportation	Characterization	Source purity	Conclusion 0
SOX's Ce	erium sou	rce	5 (256)		

Why $^{144}Ce/^{144}Pr$ couple?

- Emit $\bar{
 u}_e$ above IBD threshold: $Q_eta=3\,{
 m MeV}>1.806\,{
 m MeV}$
- Long half-life -285 days- for production & handling
- Relative ease of production of the material

Built-in safety and background problem: 2.2 ${\rm MeV}\,\gamma$ rays with 0.7% branching ratio

CeSOX needs

- Activity > 3.7 PBq
- γ attenuation $\gtrsim 10^{12}$:
 - Avoid source-induced backgrounds
 - Dose limit 500 $\mu Sv/year$.
- Fit easily in Borexino tunnel

Introduction	Production	Transportation	Characterization	Source purity	Conclusion
0	○●	0	000		O
Shielding					

Requirement: suppress $2.2 \text{ MeV } \gamma$ by a 10^{12} factor and keep dimension small enough to fit in Borexino 1 m side tunnel

Introduction O	Production	Transportation •	Characterization	Source purity	Conclusion O
Travel					

- Mayak \rightarrow St-Petersbourg \rightarrow Le Havre \rightarrow LNGS: < 3 weeks
- Areva TN MTR transportation cask with custom basket
- $\bullet\,$ Cask certification & transportation authorization $\checkmark\,$
- Expected delivery date at LNGS: December 2016.

Introduction	Production	Transportation	Characterization	Source purity	Conclusion
0	00	0	●○○		0
Source ch	aracteriz	ation			

Activity measurement: calorimetry

Two calorimeters are being built by the collaboration for subpercent activity measurements. See Lea Di Noto's talk.

CeANG β spectrum: an essential point

- Source activity measurement depends on mean decay energy
- Interaction rate in Borexino depends on source $\bar{\nu}_e$ spectrum
- Possible β emitting impurities

New measurements are necessary

- ^{144}Ce and ^{144}Pr spectra present non-unique forbidden transitions, for wich spectral shape is uncertain at few % level.
- Past measurements don't agree: up to 10-15% discrepancies

Introduction 0	Production	Transportation O	Characterization ○●○	Source purity	Conclusion 0
β spectr	oscopy				

TUM spectrometer (PRL. 112, 122501)

CEA spectrometer (under development)

Plastic scintillator + multiwire chamber γ veto

Plastic scintillator + encased source High coverage & light collection

- Preliminary samples received from Mayak, from 6 year old nuclear fuel –so not representative of the final CeANG
- Ongoing calibration and measurements in Saclay

Introduction	Production	Transportation	Characterization	Source purity	Conclusion
			000		
β spectr	oscopy				

¹⁴⁴Ce-¹⁴⁴Pr measurement

- Both spectra are required for activity estimation
- But both spectra are always mixed

IBD threshold \rightarrow special interest in ¹⁴⁴Pr β for energy \in [0, 1MeV]

We want $^{144}\mathrm{Pr}$ specific measurement

- 17 min lifetime \rightarrow repeated hour-scale measurements
- $\bullet\,$ Chemical $^{144}\mathrm{Pr}$ separation with oxydation sensitive resin

Gamma spectroscopy & mass spectrometry for

- \bullet Background studies including γ & neutron emitters
- Relative abundance of Cerium isotopes measurements
- Quantifying long lifetime impurities for SOX decommissioning
- Checking complex chromatography separation

Targeted alpha spectrometry

- $\bullet\,$ Search for $^{244}\mathrm{Cm}$ & $^{241}\mathrm{Am}$
- Activities within specification $< 10^{-6} \mathrm{Bq}(\mathrm{n})/\mathrm{Bq}(\beta)$

Introduction 0	Production	Transportation 0	Characterization	Source purity 00	Conclusion ●
Summary					

- CeANG production and transportation:
 - 3.7 PBq $^{144}\mathrm{Ce}\text{-}^{144}\mathrm{Pr}$ up to $3\,\mathrm{MeV}\,\bar{\nu}_e$ source
 - extracted and isolated from spent nuclear fuel during 2016 at FSUE "Mayak" PA : delivery by end of 2016
 - packed in 2.4 tons W shielding -delivered by end of 2015
 - transport solution frozen and authorized
- CeANG characterization:
 - activity measurement: calorimetry
 - β and $\bar{\nu}_e$ spectra: β spectroscopic measurements ongoing at Saclay
 - $\gamma,\,\alpha$ and mass spectrometries on preliminary samples show no impurity problem for production process

Introduction	Production	Transportation	Characterization	Source purity	Conclusion
Thanks f	for your a	ttention			