Cosmological implications of Higgs field fluctuations during inflation

AGrobov

Cosmological implications of Higgs field fluctuations during inflation

A.V. Grobov R.V. Konoplich S.G. Rubin

National Research Nuclear University MEPhI

Moscow, 2015

Introduction

Cosmological implications of Higgs field fluctuations during inflation

- ▶ In the Standard model the renormalisation group improved effective potential develops an instability (an additional minimum and maximum) at energies $\gtrsim 10^{10}$ GeV.
- The vacuum instability can become relevant at the inflationary stage when large fluctuations can drag to the false vacuum.
- ► We consider the standard model of chaotic inflation with the inflaton φ and quadratic potential V_{inf}(φ), and Hubble parameter

$$Hpprox 1.1\cdot 10^{14}\sqrt{r/0.2}~{
m GeV}$$

Introduction

Cosmological implications of Higgs field fluctuations during inflation

- ▶ In the Standard model the renormalisation group improved effective potential develops an instability (an additional minimum and maximum) at energies $\gtrsim 10^{10}$ GeV.
- The vacuum instability can become relevant at the inflationary stage when large fluctuations can drag to the false vacuum.
- We consider the standard model of chaotic inflation with the inflaton φ and quadratic potential V_{inf}(φ), and Hubble parameter

$$Hpprox 1.1\cdot 10^{14}\sqrt{r/0.2}~{
m GeV}$$

Introduction

Cosmological implications of Higgs field fluctuations during inflation

- In the Standard model the renormalisation group improved effective potential develops an instability (an additional minimum and maximum) at energies ≥ 10¹⁰ GeV.
- The vacuum instability can become relevant at the inflationary stage when large fluctuations can drag to the false vacuum.
- ▶ We consider the standard model of chaotic inflation with the inflaton ϕ and quadratic potential $V_{inf}(\phi)$, and Hubble parameter

$$H \approx 1.1 \cdot 10^{14} \sqrt{r/0.2} \text{ GeV}$$
 (1)

Instability scale

The effective Higgs field potential is

$$V(h) = rac{1}{4}\lambda(h)h^4$$

Cosmological implications of Higgs field fluctuations during inflation

AGrobov

(2)

Puc. : Higgs self-coupling λ , obtained in the framework of \overline{MS} renormalization scheme for central values $M_h = 125.7$ GeV and $m_t = 173.34 \pm 0.82$ GeV. Deviations for $m_t \pm 1\sigma$, $m_t \pm 2\sigma$, $m_t \pm 3\sigma$ are shown.

The instability scale $\Lambda_I,$ defined as the zero point of the running coupling λ

Fluctuations during inflation

 $F_{eff}(\phi)$

Рис. : Sketch of potential

In a time $t \sim H^{-1}$ the field fluctuates by $\delta h \sim H/2\pi$ (1 e-fold). For the number of e-folds $N_V = 60$ the average deviation of the Higgs field from its initial value during the time of inflation is about $\Delta h = \sqrt{N_V}H/2\pi \sim H \simeq 10^{14}$ GeV Cosmological implications of Higgs field fluctuations during inflation

Fluctuations during inflation

 $\mathsf{Puc.}:\mathsf{Probability}\ of landing in the electroweak vacuum at the end of inflation.$

The probability at the time $t_{end} = H^{-1}N_V$ with $N_V = 60$, when inflation has just finished.

$$P_{\Lambda}(t_{end}) = \left(1 - e^{-\frac{2\pi^{2}\Lambda^{2}}{H^{2}N_{V}}} - \frac{2\pi^{2}\Lambda^{2}}{H^{2}N_{V}}e^{-\frac{2\pi^{2}\Lambda^{2}}{H^{2}N_{V}}}\right).$$
 (3)

Cosmological implications of Higgs field fluctuations during inflation

Case $\Lambda > H$

The presence of regions with vacuum v_2 can lead to observable effects such as

- De Sitter stage continuing in these regions even after the end of inflation.
- Elementary particle masses being proportional to the vacuum expectation v₂.
- These regions shrink rapidly releasing energy. This could result in local inhomogeneities of the cosmic microwave background radiation be observed as hot objects with non-standard chemical composition.

Cosmological implications of Higgs field fluctuations during inflation

Case $\Lambda > H$

The presence of regions with vacuum v_2 can lead to observable effects such as

- De Sitter stage continuing in these regions even after the end of inflation.
- Elementary particle masses being proportional to the vacuum expectation v₂.
- These regions shrink rapidly releasing energy. This could result in local inhomogeneities of the cosmic microwave background radiation be observed as hot objects with non-standard chemical composition.

Cosmological implications of Higgs field fluctuations during inflation

Case $\Lambda > H$

The presence of regions with vacuum v_2 can lead to observable effects such as

- De Sitter stage continuing in these regions even after the end of inflation.
- Elementary particle masses being proportional to the vacuum expectation v₂.
- These regions shrink rapidly releasing energy. This could result in local inhomogeneities of the cosmic microwave background radiation be observed as hot objects with non-standard chemical composition.

Cosmological implications of Higgs field fluctuations during inflation

Cosmological implications of Higgs field fluctuations during inflation

- ► In the case of Λ < H the universe lands in vacuum state which differs from the electroweak one.
- The probability of tunneling to the electroweak vacuum is suppressed by the width of the potential barrier.
- additional maximum of the Higgs potential should be located at an energy scale above 10¹⁴ GeV; otherwise a universe like ours is extremely unlikely.

Cosmological implications of Higgs field fluctuations during inflation

AGrobov

- ► In the case of Λ < H the universe lands in vacuum state which differs from the electroweak one.
- The probability of tunneling to the electroweak vacuum is suppressed by the width of the potential barrier.
- additional maximum of the Higgs potential should be located at an energy scale above 10¹⁴ GeV; otherwise a universe like ours is extremely unlikely.

Thank you!

Cosmological implications of Higgs field fluctuations during inflation

- ► In the case of Λ < H the universe lands in vacuum state which differs from the electroweak one.
- The probability of tunneling to the electroweak vacuum is suppressed by the width of the potential barrier.
- additional maximum of the Higgs potential should be located at an energy scale above 10¹⁴ GeV; otherwise a universe like ours is extremely unlikely.

Cosmological implications of Higgs field fluctuations during inflation

- ► In the case of Λ < H the universe lands in vacuum state which differs from the electroweak one.
- The probability of tunneling to the electroweak vacuum is suppressed by the width of the potential barrier.
- additional maximum of the Higgs potential should be located at an energy scale above 10¹⁴ GeV; otherwise a universe like ours is extremely unlikely.
 - ► Thank you!