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Intoduction

Fermions are considered in a multidimensional space with two extra
dimensions.

Fermion Lagrangian contains coupling to a metric of deformed extra
space.

The point-like defect on a space with topology of sphere leads to fermion
interaction with such defect and calculate cross section of a fermion
scattering on such defect.
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Deformed extra space

Consider the manifold M4 × S2 with a metric:

ds2 = GabdX
adX b = 𝜂𝜇𝜈dx

𝜇dx𝜈 − r2(x , 𝜃)(d𝜃2 + sin2(𝜃)d𝜑2), (1)

where a, b = 0..5, 𝜇, 𝜈 = 0..3.
The function r(𝜃, x) determined by numerical solution of multidimensional
equations for gravity.

Figure: The extra space configurations
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Action and Dirac equation

Lets start from 6-dimensional action for fermion on curved space-time:

S =

∫︁
d6x

√︀
|G |iΨeAa Γa∇AΨ, (2)

where Ψ - is a six-dimensional Dirac spinor, eAa - is a ”vielbein”.

The covariant derivative has the form:

∇A = 𝜕A +
1

4
𝜔ab
A Γab (3)

The variational principle leads to the Dirac equation:

i

(︂
Γ𝜇

(︂
𝜕𝜇 − 𝜕𝜇r

r

)︂
+

Γ4
r

(︂
𝜕𝜃 +

1

2

[︂
cot(𝜃) +

r ′

r

]︂)︂
+

Γ5
r sin(𝜃)

𝜕𝜙

)︂
Ψ = 0.

(4)
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4-dimensional effective action

After standard calculations the expression for the 4-dimensional effective
action acquires a form:

S =

∫︁
d4x(i𝜓𝛾𝜇𝜕𝜇𝜓I (x)− 𝜓𝛾𝜇𝜓A𝜇(x)), (5)

where

I (x) = 2𝜋

∫︁
r2 sin(𝜃)d𝜃, A𝜇(x) =

1

2
𝜕𝜇I (x). (6)

Thus Lagrangian gets a coupling between fermion and vector and scalar
fields originated from point-like defect. The size of extra space is supposed
to vary depending on 4-dimensional coordinates.

r(𝜃, x) = a(𝜃) + b(𝜃)e−cr . (7)

a and b functions are defined by numerical solution of multidimensional
equations for gravity, c parameter is found from principle of least action.
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Amplitude and cross-section

To obtain an expression for the cross-section one should write down a
Feynman rules, considering vector and scalar fields classically. Invariante
amplitude in the first order of perturbation theory is:

M = iu2𝛾𝜇u1p1𝜇𝜒(q) + u2𝛾𝜇u1A𝜇(q), (8)

where

𝜒(q) =
32𝜋2c𝛼

(q2 + c2)2
+

32𝜋2c𝛽

(q2 + 4c2)2
, A𝜇(q) =

i

2
𝜒(q)q𝜇. (9)

Now one can calculate the square of invariante amplitude:

|M|2 = 4m2𝜒2(m2 + (E 2 −m2) sin2
(︂
𝜃4
2

)︂
). (10)

Cross-section of the fermion scattering on classical potential is given by:

d𝜎

dΩ4
=

1

16𝜋2
|M|2. (11)
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Electron scattering cross-section

Figure: Electron scattering cross-section vs full energy of the electron,
mD = 10 TeV , 𝛼 ∼ 10−2,𝛽 ∼ 10−2 and c = 10−3mD
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Conclusion

One can see that cross-section is zero for massless fermion.

To simplify the analysis we reqired that fermion can not propagate in extra
space and took into account only four components of 8-component Dirac
spinor. So the obtained result should be treated as estimation of more
complicated effect.

On the other hand nonrelativistic electrons interact with cross-section
10−48cm2.

Thank you!
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