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Motivation

Search for non-singular BH-like solutions in classical gravity

Exact solutions combining properties of BH, WH, and non-singular
cosmological models

Phantom scalar fields in the context of the accelerated cosmological
expansion (estimates give w . -1, e.g., Planck-2015)

Possible existence of a global primordial magnetic field (~ 10-15 G)
causing correlated orientations of quasars distant from each other
(Poltis and Stojkovic, 2010). Possible global anisotropy

Different geometric and causal structures and their connection with
some cosmological scenarios

Phantom fields are not observed = the “trapped ghost” concept

Problems with “trapped ghosts” (instability) = possible “invisible
ghosts”



What is a wormhole?



Wormholes (Spherical vs. Cylindrical)

S

SPH: twice asymptotically flat WH A wormbhole is a “handle”? A shortcut

topology (S*2 x R) between remote parts of the universe (or a

CYL: topology (51 x R x R) time machine if times at A and B are
essentially different)

A “hanging drop” wormhole. A “dumbbell” wormhole.
Topology: R*3 for SPH and CYL SPH: topology S*3

CYL: topology S"2 xR



Black Universes

A black universe (BU) is a regular black hole where,
beyond the horizon, instead of a singularity there is
an expanding, asymptotically isotropic space-time.
It combines the properties of the following objects:

« A black hole (BH) — a Killing horizon separating static
and non-static space-time regions;

A wormhole (WH) — no center and a regular minimum
of the area of coordinate spheres;

* A nonsingular cosmological model — at large times the
nonstatic region reaches a de Sitter (dS) mode of
Isotropic expansion;



The Model

Action!: S = %f v—g d*x [R + 2egh0,00,0 — FFF,, — QV(Cf))]

e F,, — electromagnetic field tensor;
e ¢ — phantom scalar field (¢ = —1) with a potential V().

General (formally) static sph. symm. metric in quasiglobal gauge
(goog11 = —1):

ds? = A(p)dt? — dp” _ r?(p)dQ?
Alp)
p € R — quasiglobal coordinate, 9Q? = d#? + sin” 6 dy?,

r(p) — “area function”,

A(p) — “redshift function”,
A(p) >0 = R-region,
A(p) <0 = T-region.

h=c=8nrG =1, signature (+ — — =)



Properties of function A(p), r(p) for
WH’s and BU’s

Both A(p) and r(p) should be regular, r(p) > 0 everywhere, and
r(+o0) — oo.

Regions with A > 0 (R-regions) = static,

with A < 0 (T-regions) = cosmological (Kantowski-Sachs).

Flat, de Sitter or AdS asymptotic behavior as p — Foc:

e WH: no horizons (A(p) > 0 everywhere), and flat or AdS
asymptotics at both ends.

o BU: flat or AdS asymptotic at one end; de Sitter asymptotic at the
other end.



Fields

Scalar field ¢(x):

T[] = €A(p)¢' (p)* diag(1, —1, 1, 1) +d};V(p)
e = —1 — phantom field

Electromagpnetic field F,, (x) (conforms to Wheeler's idea of a
“charge without charge”):

Fﬂl = _FIC' ((3]8'['_‘,131';[(3)T F[]l Fﬂl = —qﬁ/r“(p)

F»3 = —F3, (magnetic), FxF> = q2/r*(p)
2

r4(p)

(Maxwell's equations have been solved)

T [Fl= diag(1, 1, -1, 1),  ¢°=q: + qa.



Einstein and Scalar Field Equations

There are three independent equations [Egs. (4), (5) follow from (1) —
(3)] for 4 functions r(p), A(p), V(0), é(p):

e = —ed'’, (1)

(A'r?) = —2r’V +2¢°/r, (2)

A(r?)" — rPA" = 2—4q¢°/r, (3)
2(AR2HY = er?dV/de, (4)

—1+ A+ A% = r*(eA¢”* — V) —q°/r. (5)

Possible approaches:

Specify the potential V/(¢), find the functions r, A, ¢ (very hard
technically).

Specify r(p), find the functions V, A, ¢ (inverse problem method)

To find examples of solutions possessing particular properties, the inverse
problem method is quite suitable.



Solution

Choose a function r(p) that can provide WH and BU solutions:

r=(p*+b)2=b\V1+x2, x=p/b, b=const=1

Integrate Eq. (3) twice, denoting B(x) = A/r?:

B(x) = By+ ) arctan x+q° arctan® x

1+ g° + px 2q°x
q 2P+p+ ‘-?2
1+ x 1+ x

Fix the integration constants By, p using the asymptotical flatness
condition lim B = 0 and comparing asymptotic of A(x) with the

x—4+00

Schwarzschild-like one, A(x) ~ 1 — 2m/x:

2 .2
B{):—ﬂzp_ﬂfv p:3m—?rq2




Solution 2

There is a two-parametric family of curves B(x, g, m) with the
parameters g, m.

For the scalar field and potential from Eqgs. (1), (2) we have:

b= ++/2 arctan x + do;

>
__ q 1 2 2 2
V = 1127 2157 {Qq arctan® x (3x* + 1)

+ arctan x(18x2m — 6mx°q° + 12xq° — 21q° + ﬁm)

3 1
+q° (2 °x 2—67rx+§7r +6)—m(9ﬂ'x2—18x+3?r)].



Symmetric Asymptotically Flat Configurations (A)
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Asymmetric Asymptotically Flat Configurations (B)
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Asymptotically Flat Configurations Withm >0

Solution type Configuration Horizons: order n,
(curve number) (x = —o0)—(x — +00) | R-T-region disposition
Al,A2 M -M WH| none [R]
A3 M -M extr. BH| 1 hor., n =2 [RR]
Ad M -M BH| 2 hor., n =1 [RTR]
B1, C1,C4,D1,D2 [dS -M BU| 1 hor,, n=1[TR]
B2, C2 dS -M BU| 2 hor.,, n=2;1[TTR]
C4 dS -M BU| 2 hor.,, n=1;2 [TRR]
B3, C3 dS -M BU| 3 hor., n=1, [TRTR]
D3 AdS-M BH| 2 hor.,, n =1 [RTR]
B4 AdS-M extr. BH| 1 hor., n =2 [RR]
B5 AdS-M WH| none [R]

Asymptotic behavior of B(x, g, m) at x — —o0:

B(—>x)=0 = M
B(—o0) <0 = dS
B(—o0) >0 = AdS




Parametric Map of Asymptotically Flat Solutions
on The (g, m) Plane

Wormholes
(no horizons)

0 1 2 3 4 5 6 %
m

Right: zoomed-in part of the map showing that configurations with 3
horizons are generic but occupy a very narrow band.



Trapped Ghosts

Problem: phantom fields are not observed.

Suggested solution: a field ¢ in the action

1
5= f V=& d'x[R+2h(0)g" 8, 60,6 — F*F,, —2V(9)|.

(h(¢) is a smooth function) which is phantom (h(¢) < 0) in a
strong-field region (say, |¢| > ¢erit) and normal otherwise.

r(x)

How to realize that in our problem
setting? Recall that in our metric
r' >0 = phantom,

r >0 = normal field




Trapped Ghosts 2

Field equations:
2(Ar*he’) — Ar*h'¢’ = r*dV/do,
(A'r?) = —2r*V +2q%/r?
r'/r = —h(qﬁ)qﬁ"z:
A(r2)n . r2AH — 2 _ 4q2/r2!
— 1+ A + Ar'? = r?(hA¢? — V) — ¢*/r?.

Ansatz for r(u) realizing the trapped ghost idea [x := u/a]:

x?+1
Vx2+n
1x%(2—n)+ n(2n—1)
a (x2 + n)3/2

r'" >0 at x> < n(2n—1)/(n—2) and r"” < 0 at larger |x|,

n =const > 2, a= const > 0.

r(u) = a

, we have

Since r''(x) =

as required; also, r &~ a|x| at large |x]|.



Trapped Ghosts - Solutions

Solutions (n = 3 for definiteness):

2 4 2 4
26 + 24x° + 6x" + 3px(69 + 100x° + 39x™) N 39p Arctan x
6(1 + x2)3 2

N q°[107 + 383x7 + 375x* 4+ 117x° 4 6x(69 + 169x* + 139x* 4 39x°) arctan x]
o(1 + x2)
+13q” arctan” x, (12)

B(X) — B[: 1

where p and By are integration constants. Asymptotic flatness =

13 2
BO = —?ﬂ'(:gp + ﬂ_qz). p=m-— §ﬂ_q2.

Thus B is a function of x and two parameters, m = mass and g = charge.
Other unknowns are, as before, found from the field equations.
Using the arbitrariness in ¢ definition, it is convenient to assume

(13)

1 X
o(x) = 73 arctan 73’ (14)

so that ¢ has a finite range: ¢ € (—co, ¢o). Then,

x* =15  3tan®(y/3¢) — 15
x2+1  3tan?(vV3¢)+1
The Null Energy Condition is violated only where h(¢) < 0.

h(¢) = (15)




Trapped Ghosts — Solutions 2
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Plots of r(x) (Ieft), r? r'"(x) (middle) and h(x) (right) for n = 3.

The diversity of configurations described by the solutions, depending on
the parameters m and g, is similar to that with a “visible” ghost.

As before, shifts in By allow for obtaining non-asymptotically flat
configurations.



Invisible Ghosts

Another possible explanation of the unobservability of ghosts is their
short range, i.e., a sufficiently rapid decay at large distances.
Example with two fields, normal (¢) and phantom (%):

~ Tor / VEBA*X[ R+ 2h,(967,00°) — 2V/(9°) — Fu F™],

in the same static, spherically symmetric space-time, where {¢?} is a set
of scalar fields, h,, = hap(@?) is a nondegenerate target space metric,
(0¢?,00P) = g"0,$?0,¢®, and V(¢?) is an interaction potential.
The same static, spherically symmetric problem as before but now with
two fields: ¢! = ¢ and ¢ = 1, with h,, = diag(1, —1).
One of the equations reads r”’ /r = —¢"? + 1)'?.
We choose the same r(x) as for a trapped ghost|(x = u/a):
2

r(u) = asz—%_ln, n=const >2, a=const >0
Then we obtain the same set of geometries as before. Different is the
nature and behavior of the scalar fields.



Invisible Ghosts 2

For the scalar ¢ (using the arbitrariness) we assume
¢(x) = K arctan(Lx),

where K and L are adjustable constants. We choose K and L in such a
way as to make the phantom field ¢) decay at large x more rapidly than
¢. Thus, for n = 4 we should take K =2/v/23, L = ./2/23, then

Y ~ x~% while ¢’ ~ x72 at large |x]|.
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The quantities ¢’ and 1’ in the strong and weak field regions



Invisible Ghosts 3

Obs. limits on global magnetic fields: 1072 > \§| > 10718 Gauss.

Present scale factor 2 10%® cm, it corresponds to r(u) in our metric.

We take the conservative estimate: let |B| > 10718 Gauss now.
It evolves ox a=2 =

At recombination (since a/ag ~ 1073), |B| ~ 10~!2 Gauss

At baryogenesis (a/ao ~ 10712), |B| ~ 10° Gauss

Constraint on the energy density of a global magnetic field.
Degree of anisotropy at recombination (from CMB properties)
~ 107°.

pCMB/pmagn = const = at present pyaen :;g 10—39 g cm 3
= |B| < 107® Gauss

In reality it is much smaller (if any).

Theoretical stability limit of a classical magn. field in

Weinberg-Salam theory: B < 10** Gauss. Hence, the corresponding
min r(u) = 10" cm ~ 100 km.



Conclusion

Analytical exact solutions have been obtained in GR with an
electromagnetic field and different kinds of phantom fields. These are
globally regular static, spherically symmetric solutions describing
traversable wormholes (with flat and AdS asymptotics) and regular black
holes, in particular, black universes.

The configurations obtained are quite diverse and contain different
numbers of Killing horizons, from zero to four. This substantially enriches
the list of known structures of regular BH configurations.

Such models can be of interest both as descriptions of local objects (black
holes and wormholes) and as a basis for building non-singular cosmological
scenarios.

Phantom fields are not observed under usual conditions. This circumstance
is accounted for by the concepts of trapped or (preferably) invisible ghosts.

Numerical estimates concerning a possible global magnetic field are
compatible with a BU model.
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