

Temperature dependent Investigations of Dark Currents of SiPM

E. Engelmann, S. Vinogradov, F. Wiest, E. Popova, P. Iskra, T. Ganka, Ch. Dietzinger, W. Gebauer, S. Löbner, R. Fojt, W. Hansch

Nano & Micro Systems

ICPPA, 10th of October, 2015

Goal of this work: > reduction of dark count rate of Silicon Photomultipliers

gain initial information on dark generation and extract contributions to dark current

General approach: > activation energies determined from T dependencies are expected to be a good indicator of physical mechanisms

- conventional methods of extraction of E_{act} at fixed voltages/overvoltages may not be suitable
- effects dependent on voltage and overvoltage cannot be separated

Proposed method: > independent measurements of photo- and dark-response

- separation of overvoltage dependent responsivity and voltage dependent high-field effects
- find expression for field-independent generation component

Nano & Micro System

Motivation

- temperature dependent investigations were performed in a range from 20°C to -30°C
- the measurements were executed on a KETEK 3x3mm² SiPM which was mounted on a Peltier element and evacuated in a TO8 module

der Bundeswehr

Universität 🚱 München

der Bundeswehr

Conventional Method

- conventional method as proposed in *R.Pagano et al.; "Dark Current in Silicon Photomultiplier Pixels: Data and Model"; IEEE Transactions on Electron Devices; Vol.59 NO. 9; 2012* is not suitable here
- E_{act} can not be attributed to a certain mechanism

ICPPA, 10th of October, 2015

4

Universität

- dark and illuminated data was taken
- assumption of an equal responsivity R, for electrons originating from dark generation and photoelectrons

 $\rho(T, V, V_{OV}) := Response$ $R(V_{OV}) := Responsivity$ $R_{dark}(V_{OV}) \approx R_{ph}(V_{OV}) = \frac{\rho_{ph}(V_{OV})}{\rho_{ph}(V_0)}$

 $\rho_{dark}(T,V,V_{OV}) = \rho_{ini}(T,V) \cdot R_{ph}(V_{OV})$

- in general this approach is applicable for any Response $\rho,\,e.g.\,\,I_{dark}\,\,or\,\,DCR$

Universität

Determination of Inot_gained

 $I_{dark}(T, V, V_{OV}) = I_{not_gained}(T, V) + I_{gained}(T) \cdot F_{high_field}(V) \cdot R_{ph}(V_{OV})$

ICPPA, 10th of October, 2015

6

Universität

Determination of Igained

$$I_{dark}(T, V, V_{OV}) = I_{not_gained}(T, V) + I_{gained}(T) \cdot F_{high_field}(V) \cdot R_{ph}(V_{OV})$$

 in order to determine the multiplied component, the difference between the measured dark current and I_{not_gained} is investigated as a function of the responsivity

$$I_{diff}(R_{ph}) = I_{gained} \cdot R_{ph} \left(1 + \frac{R_{ph}}{R_{eff}} \right)$$

- I_{diff} could be described with a parabolic function in good agreement in the range between R=0 to R=4x10⁶
- I_{gained} represents initial charge carriers generated or provided to the multiplication region

2nd Approach-Reconstruction of Dark Current

$I_{dark}(T, V, V_{OV}) = I_{not_gained}(T, V) + I_{gained}(T) \cdot F_{high_field}(V) \cdot R_{ph}(V_{OV})$

Nano & Micro Systems

der Bundeswehr

Universität 🚯 München

Universität (München

Results-Activation Energies

- I_{gained} shows two activation Energies $E_{act}^1 \approx E_g$ and $E_{act}^2 \approx E_g/2$
- $F_{high_{field}}$ lowers the effective activation energy by ΔE_{act}
- ΔE_{act} is close to expected value for Poole-Frenkel effect

ICPPA, 10th of October, 2015

Results so far

- the chosen model for dark current could describe the measured data to a sufficiently precise level
- field-enhanced effects could be separated from generation components
- the extracted activation energies indicate that dark currents at T>-5°C are diffusion dominated, whereas currents at T<-5°C are dominated by generation (KETEK devices)</p>

Further investigations

- confirmation of model for different type of devices
- identification of micro-cell regions as origin for diffusion currents
- change technological process in order to reduce DCR

Thank you for the attention

11

Additional Slides

ICPPA, 10th of October, 2015

12

 analysing I_{gen} consisting of a multiplied and non-multiplied component

$$I_{dark} = I_{not_gained} + I_{gained} \cdot R_{ph}$$
$$I_{not_gained} = I_0 \cdot \sqrt{\frac{V}{V_0}}$$

- I_{gained} is assumed to be a small fraction of I_{not_gained}

$$I_{gained} = \delta \cdot I_{not_gained}$$

Universität (München

1st Approach-Reconstruction of Dark Current

ICPPA, 10th of October, 2015

14

Universität 🔥 München

der Bundeswehr

Results- SensL

- a 3x3mm² C-Series device from SensL was investigated for comparison
- only one slope could be observed in the Arrhenius plot
- E_{act} of (0.57 ± 0.02) eV is attributed to generation current
- · the contribution of diffusion current is expected to be suppressed for this device

Reconstruction of Dark Current

ICPPA, 10th of October, 2015

der Bundeswehr

Universität 🔥 München

Photocurrent

ICPPA, 10th of October, 2015

der Bundeswehr

Universität 🔥 München

17

Results-E_{act} at fixed Overvoltage

- the extracted E_{act} directly from I_{dark} (T) and DCR (T) at a fixed overvoltage show slightly different values, but agree within the uncertainties
- E_{act} from "raw" data is an indicator for physical mechanisms
- · for a precise analysis, a more advanced analysis is necessary

ICPPA, 10th of October, 2015

der Bundeswehr

Universität 🕼 München

Universität (München

DCR in extended T range

Confirmation of Model

$$DCR = \frac{I_{gain} \cdot F_{high_field}}{q}$$

- E_{act} extracted from DCR is a sum of field-independent I_{gained} and field-dependent $F_{high_{field}}$
- DCR_{measured} and DCR_{reconstr} show comparable E_{act} within the uncertainties
- · this result is an indicator of the parameter fit quality
- the measured DCR has to be additionally corrected for avalanche triggering probability

der Bundeswehr

Universität 🚯 München

$$DCR = \frac{I_{gain} \cdot F_{high_field}}{q}$$

- DCR_{reconstr} overestimates DCR_{measured}
- internal generation rate of dark events is expected to be higher than DCR
- the measured DCR has to be additionally corrected for avalanche triggering probability