Charged charmoniumlike states at Belle

Kirill Chilikin

ITEP, MEPhI

ICPPA 2015, 6 October 2015

K. Chilikin (ITEP, MEPhI)

Charged charmoniumlike states at Belle

ICPPA 2015 1 / 20

- 1. Introduction.
- 2. Results.
 - Old results (before 2013).
 - Measurement of the $Z_c(4430)^+$ quantum numbers.
 - Amplitude analysis of the $\bar{B}^0 \to J/\psi K^- \pi^+$.
- 3. Conclusion.

The Belle experiment

Production of charged charmoniumlike states:

- B-meson decays (772 × 10⁶ B-meson pairs) — this talk.
- ISR (e. g., $e^+e^-
 ightarrow \gamma_{\rm ISR} Z_c(3900)^+\pi^-).$

Old results

K. Chilikin (ITEP, MEPhI)

Charged charmoniumlike states at Belle

ICPPA 2015 5 / 20

Observation of the $Z_c(4430)^+$

S.-K. Choi *et al.*, Phys. Rev. Lett. **100**, 142001 (2008). Analysis of the decays $B \rightarrow \psi' K \pi^+$.

K. Chilikin (ITEP, MEPhI)

R. Mizuk *et al.*, Phys. Rev. D **80**, 031104(R) (2009). Both first analyses did not take interference into account \Rightarrow Dalitz analysis was performed.

The same data as for the previous Belle analysis were used.

Results:

$$\begin{split} \mathsf{M} &= 4443^{+15+19}_{-12-13} \; \mathsf{MeV}/c^2, \\ \mathsf{\Gamma} &= 107^{+86+74}_{-43-56} \; \mathsf{MeV}, \\ \mathsf{Significance:} \; 6.4\sigma. \end{split}$$

A fit of two-dimensional distribution $(M_{K\pi}^2, M_{\psi(2S)\pi}^2)$ was performed. The information is still lost due to integration over the angular variables.

Observation of $Z_c(4050)^+$ and $Z_c(4250)^+$ (Belle)

R. Mizuk et al., Phys. Rev. D 78, 072004 (2008).

Decay:
$$\bar{B}^0 \rightarrow \chi_{c1} K^- \pi^+$$

The $Z_c(4050)^+$ parameters:
 $M = 4051 \pm 14^{+20}_{-41} \text{ MeV}/c^2$,
 $\Gamma = 82^{+21}_{-17} + 47_{-22} \text{ MeV}$.
The $Z_c(4250)^+$ parameters:
 $M = 4248^{+44}_{-29} + 180_{-35} \text{ MeV}/c^2$,
 $\Gamma = 177^{+54}_{-39} + 316_{-61} \text{ MeV}$.
Significance: $Z_c(4250)^+$: 6.2σ ,
 $Z_c(4050)^+$: 5.0σ .

- Two-dimensional fit (Dalitz analysis).
- The Z_c(4050)⁺ and Z_c(4250)⁺ were not confirmed by BABAR (PRD 85, 052003 (2012)) (but the method is less sensitive + smaller data sample) or any other experiment.

K. Chilikin (ITEP, MEPhI)

Measurement of the $Z_c(4430)^+$ quantum numbers

K. Chilikin *et al.* (Belle Collaboration), Phys. Rev. D **88**, 074026 (2013)

K. Chilikin (ITEP, MEPhI)

Charged charmoniumlike states at Belle

ICPPA 2015 9 / 20

\mathcal{Z}_{c} Measurement of the $Z_c(4430)^+$ quantum numbers

(four-dimensional amplitude analysis of $\bar{B}^0 \rightarrow \psi(2S) K^- \pi^+$)

JP	0-	1-	1+	2-	2+
Mass, MeV/ c^2	4479 ± 16	4477 ± 4	4485 ± 20	4478 ± 22	4384 ± 19
Width, MeV	110 ± 50	22 ± 14	200 ± 40	83 ± 25	52 ± 28
Significance	4.5σ	3.6 σ	6.4σ	2.2σ	1.8σ

$$\begin{split} M &= 4485^{+22+28}_{-22-11} \ \text{MeV}/c^2, \\ \Gamma &= 200^{+41+26}_{-46-35} \ \text{MeV}. \end{split}$$

Preferred hypothesis: $J^P = 1^+$. Exclusion levels for $J^P = 0^-$, 1^- , 2^- and 2^+ : 3.4σ , 3.7σ , 4.7σ and 5.1σ .

BLHCb confirmation

R. Aaij *et al.* (LHCb Collaboration), Phys. Rev. Lett. **112**, 222002 The existence of the $Z_c(4430)^+$ was confirmed (significance: 13.9 σ).

$$\begin{split} M &= 4475 \pm 7^{+15}_{-25} \text{ MeV}/c^2, \\ \Gamma &= 172 \pm 13^{+37}_{-34} \text{ MeV}. \\ \text{The mass and width of the} \\ Z_c(4430)^+ \text{ agree with Belle result,} \\ \text{The quantum numbers } J^P &= 1^+ \\ \text{were confirmed. Other hypotheses:} \\ 0^-, 1^-, 2^- \text{ and } 2^+ \text{ were excluded} \\ \text{at the levels of } 9.7\sigma, 15.8\sigma, 16.1\sigma \\ \text{and } 14.6\sigma, \text{ respectively.} \end{split}$$

Amplitude analysis of $\bar{B}^0 \rightarrow J/\psi K^- \pi^+$.

K. Chilikin *et al.* (Belle Collaboration), Phys. Rev. D **90**, 112009 (2014)

K. Chilikin (ITEP, MEPhI)

Charged charmoniumlike states at Belle

ICPPA 2015 12 / 20

Amplitude analysis of $ar{B}^0 o J/\psi K^-\pi^+$

- Four-dimensional amplitude analysis similar to the measurement of the $Z_c(4430)^+$ quantum numbers.
- Resonances: all K^* (10 resonances) and $Z_c(4430)^+$.
- A search for additonal Z_c^+ was performed.

Search results:

JP	0-	1-	1+	2-	2+
Mass, MeV/ c^2	4318 ± 48	4315 ± 40	4196^{+31}_{-29}	4209 ± 14	4203 ± 24
Width, MeV	720 ± 254	220 ± 80	370 ± 70	64 ± 18	121 ± 53
Significance	3.9σ	2.3σ	8.2σ	3.9σ	1.9σ

The $Z_c(4200)^+$ Wilks significance is 8.2σ for the default model and 6.6σ including the systematic error. The global significance is 6.2σ .

$$\mathcal{B}(\bar{B}^0 \to Z_c(4200)^+ K^-) \times \mathcal{B}(Z_c(4200)^+ \to J/\psi\pi^+) = (2.2^{+0.7+1.1}_{-0.5-0.6}) \times 10^{-5}$$

K. Chilikin (ITEP, MEPhI)

Charged charmoniumlike states at Belle

ICPPA 2015 14 / 20

The $Z_c(4430)^+$ significance is 5.1 σ for the default model and 4.0 σ including the systematic error.

$$\mathcal{B}(\bar{B}^0 \to Z_c(4430)^+ K^-) \times \mathcal{B}(Z_c(4430)^+ \to J/\psi\pi^+) = (5.4^{+4.0+1.1}_{-1.0-0.9}) \times 10^{-6}$$

K. Chilikin (ITEP, MEPhI)

Contributions of the $Z_c(4200)^+$ and $Z_c(4430)^+$

Argand plot for H щ 0. 0.05 3.919 4.473 -0.05 642 4.104 -0.1 4.288 -0.15 4.750 -0.2 -0 1 0.2 Re H₀ 0 0.1

 H_1 absolute value and phase change as for a resonance.

 H_0 has too large errors to draw any conclusions.

 $Z_c(3900)^+$ parameters:

 $M_0 = 3891.2 \pm 3.3 \text{ MeV}/c^2, \ \Gamma_0 = 39.5 \pm 8.1 \text{ MeV}.$

JP	0-	1-	1+	2-	2+
Mass, MeV/c ²	3889.8 ± 3.3	3890.3 ± 3.1	3890.6 ± 3.3	3891.1 ± 3.2	3891.5 ± 3.3
Width, MeV	43.2 ± 6.5	37.8 ± 7.9	39.2 ± 8.1	39.4 ± 8.5	41.2 ± 7.7
Significance	2.4 σ	1.1σ	0.1σ	$<$ 0.1 σ	0 .2 <i>σ</i>

No significant signal was observed. For $J^P = 1^+$ (the quantum numbers are measured by BESIII)

$$\mathcal{B}(\bar{B}^0 \to Z_c(3900)^+ K^-) \times \mathcal{B}(Z_c(3900)^+ \to J/\psi\pi^+) < 9 \times 10^{-7}$$
 (90% CL).

K. Chilikin (ITEP, MEPhI)

- The $Z_c(4200)^+$ quantum number hypotheses $J^P = 0^-, 1^-, 2^-, 2^+$ are excluded at the levels of 6.1σ , 7.4σ , 4.4σ and 7.0σ , respectively.
- Branching fractions:

$$\mathcal{B}(\bar{B}^0 \to J/\psi K^- \pi^+) = (1.15 \pm 0.01 \pm 0.05) \times 10^{-3}, \ \mathcal{B}(\bar{B}^0 \to J/\psi K^*(892)) = (1.19 \pm 0.01 \pm 0.08) \times 10^{-3},$$

- The $Z_c(4430)^+$ quantum numbers were measured: $J^P = 1^+$. This result is confirmed by the LHCb collaboration.
- A new charged charmoniumlike state $Z_c(4200)^+$ with $J^P = 1^+$ was observed in the decays $\bar{B}^0 \to J/\psi K^-\pi^+$, evidence for $Z_c(4430)^+ \to J/\psi \pi^+$ was found.