

Measuring the neutrino mixing angle θ_{13} in reactor experiments

V. V. Sinev

Institute for Nuclear Research of

Russian Academy of Sciences

Plan of the talk

- Background for θ_{13} measurement. Before KamLAND data.
- Neutrino mixing matrix
- How the measurement of θ_{13} was prepared
- Double Chooz
- RENO
- Daya Bay
- Conclusions and outlook

Looking for neutrino oscillations at nuclear reactors at 80th and 90th

- Goesgen (37, 46, 65 m), 1984
- Bugey (18, 23 m), 1984
- ILL (8.5 m) 1983
- Bugey-3 (15,40,95 m), 1994
- Savannah River (18, 24 m), 1994
- Rovno, 1984-1986 (18-25-18 m), 1987-1990
- Krasnoyarsk (57, 230 m) 1984-1990
- Palo Verde (750 m) 1997-98
- CHOOZ (1050 m) 1997

Ratio of measured rate to expected one

Reactor experiment proves solar neutrino oscillations (KamLAND), 2005

180 km – mean distance to reactor $\Delta m^2 = (7.58^{+0.14}_{-0.13} \text{ (stat.}) ^{+0.15}_{-0.15} \text{ (syst.}))10^{-5} \Rightarrow B^2,$ $tg^2\theta = 0.56^{+0.10}_{-0.07} \text{ (stat.}) ^{+0.10}_{-0.06} \text{ (syst.}),$ $sin^2 2\theta = 0.857 \pm 0.024$

Three neutrino flavors

- Neutrino flavor: $v_{e'} v_{\mu'} v_{\tau}$ N = 3 (2.9840±0.0082, PDG2012)
- Mass eigenstates: v₁, v₂, v₃
- Mixing: $|v_k\rangle = \Sigma U_{ki} |v_i\rangle$

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{1e} U_{2e} U_{3e} \\ U_{1\mu} U_{2\mu} U_{3\mu} \\ U_{1\tau} U_{2\tau} U_{3\tau} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$\mathsf{P}_{ee} = 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{13} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \text{etc}, \ \Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4F}$$

Double Chooz: θ_{13} measurements with reactor neutrinos

Thiago Bezerra (thiago@awa.tohoku.ac.jp)

Double Chooz June 2015 Results

17th Lomonosov, 21/08/2015

2 / 26

Discovering of third neutrino mixing angle, 2012

- At the beginning of 2000th there was appeared a proposal to use two identical detectors (near and far) for measuring θ_{13} .
- After several Workshops a number of projects and sites were proposed for realization the proposal. Finally three of them were realized: Double Chooz, Daya Bay, RENO. Double Chooz is still ongoing.

Double Chooz (France)

Detector scheme

Neutrino Candidates and Uncertainties

- Extended livetime
 - 17351 IBD candidates in 460.67 days
 - x2 statistics wrt last publication (Gd-II)
- -20% uncertainties wrt last publication
- Reactor Off-off period
 - Unique in Double Chooz
 - 7 IBD candidates in 7.24 days, in agreement with bkg model (12.9⁺³¹.1.4 events)

Uncertainty	Gd-II (%)	H-II (%)	Gd-III (%)	Gd-III/Gd-II
Reactor Flux	1.7	1.7	1.7	
Detection ε	1.1	1.6	0.6	0.6
Cosmogenic bkg		1.2	+1.1/-0.4	0.5
Correlated bkg	Charles and	0.5	0.1	0.2
Statistics	1.1	1.1	0.8	0.7
Total	2.7	3.1	+2.3/-2.0	0.8

Backgrounds in DC

(Gd) $0.97^{+0.41}_{-0.16}$ per day (H) 4.33 ± 0.01 (Gd) 0.604 ± 0.051 per day (H) 1.55 ± 0.15 (Gd) 0.070 ± 0.003 per day (H) $0.95^{+0.57}_{-0.33}$

Data Analysis DC 2015

Rate + Shape (Gd)Analysis

 $\Delta m^2 = 2.44 \text{ eV}^2$ (MINOS)

RRM analysis (n-H) $\sin^2 2\theta_{13} = 0.098^{+0.038}_{-0.039}$ (Gd) $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$

of n-Gd analysis. $\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029}$

Combined analysis $\sin^2 2\theta_{13} = 0.090 \pm 0.33$ with

ICPPA, NNU MEPHI, Moscow, 5-10 October

2015

Data taking from 2015 are ongoing with the use of two detectors

Precision that we expect to have from using both detectors

RENO (Hanbit (Yeongwang) PP, Korea)

one – 1380 m

Детектор

target 140 cm radius, 320 cm hight

60 cm gamma-catcher

70 cm buffer

150 cm muon veto

Detector	Near	Far		
Selected events	433,196	50,750		
Total background rate	12.48±0.68	4.62 ± 0.28		
(per day)				
IBD rate after background subtraction (per day)	569.16±0.87	63.86±0.28		
Live time (days)	761.11	794.72		
Accidental rate (per day)	1.82±0.11	0.36±0.01		
⁹ Li/ ⁸ He rate (per day)	8.28±0.66	1.85±0.20		
Fast neutron rate	2.09±0.06	0.44 ± 0.02		
(per day)				
²⁵² Cf rate (per day)	0.28±0.05	1.98 ± 0.27		

RENO experiment results

 $\sin^2 2\theta_{13} = 0.103 \pm 0.013 (\text{stat.}) \pm 0.011 (\text{syst.})$

From the Rate only analysis based on statistics 17102 events in far detector

New RENO result (2014)

 $\sin^2 2\theta_{13} = 0.101 \pm 0.008$ (stat) ± 0.010 (syst), with $\Delta m^2_{31} = 2.32 \times 10^{-3} \text{ eV}^2$

The result was crosschecked with data of n-H captures: $sin^2 2\theta_{13} = 0.103 \pm 0.014$ (stat) ± 0.014 (syst).

Daya Bay experiment (Daya Bay & Ling Ao power plants)

Signals and backgrounds

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
IBD candidates	304459	309354	287098	190046	40956	41203	40677	27419
DAQ live time(days)	565.436	565.436	568.03	378.407	562.451	562.451	562.451	372.685
ε_{μ}	0.8248	0.8218	0.8575	0.8577	0.9811	0.9811	0.9808	0.9811
ε_m	0.9744	0.9748	0.9758	0.9756	0.9756	0.9754	0.9751	0.9758
Accidentals(per day)	8.92 ± 0.09	8.94 ± 0.09	6.76 ± 0.07	6.86 ± 0.07	1.70 ± 0.02	1.59 ± 0.02	1.57 ± 0.02	1.26 ± 0.01
Fast neutron(per AD per day)	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01			
⁹ Li/ ⁸ He(per AD per day)	2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14			
Am-C correlated 6-AD(per day)	0.27 ± 0.12	0.25 ± 0.11	0.27 ± 0.12		0.22 ± 0.10	0.21 ± 0.10	0.21 ± 0.09	
Am-C correlated 8-AD(per day)	0.20 ± 0.09	0.21 ± 0.10	0.18 ± 0.08	0.22 ± 0.10	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.07 ± 0.03
$^{13}C(\alpha, n)^{16}O(\text{per day})$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
IBD rate(per day)	657.18 ± 1.94	670.14 ± 1.95	594.78 ± 1.46	590.81 ± 1.66	73.90 ± 0.41	74.49 ± 0.41	73.58 ± 0.40	75.15 ± 0.49

TABLE I. Summary of signal and backgrounds. Rates are corrected for the muon veto and multiplicity selection efficiencies $\varepsilon_{\mu} \cdot \varepsilon_{m}$. The measured ratio of the IBD rates in AD1 and AD2 (AD3 and AD8 in the 8-AD period) was 0.981 ± 0.004 (1.019±0.004) while the expected ratio was 0.982 (1.012).

Daya Bay last results

 $\sin^2 2\theta_{13} = 0.084 \pm 0.005,$

 $|\Delta m^2_{ee}| = (2.42 \pm 0.11) \times 10^{-3} eV^2$

Double Chooz in the race for θ_{13}

PPP v 2015

3

Conclusions and outlook

- The discovery of third neutrino mixing angle θ_{13} was made in the last three years, but prepared more than 10 years.
- The value of mixing angle θ_{13} is appeared unexpectedly high (about 9°).
- This opens the road for measuring CP-violation phase
- Also one should account its include in probability of flavor surviving or disappearing.
- Neutrino mass hierarchy may be observed in reactor experiments in nearest 10-15 years (JUNO and RENO-50).