Solar magnetorgam editing using discrete Morse theory.

<u>Alexeev V. V.</u>, Yaroslavl State University Makarenko N. G., Pulkovo Observatory, St. Petersburg Park D. O., volunteer, St. Petersburg

October 8, 2015

- Simplify complexity of the observed field
- Preserve main topological features

Data for processing

We use HMI / SDO magnetogram data.

Another Applications of Morse Theory

Astrophysics (voids, filaments and walls detection), geomorphology.

[Sousbie, 2010], [Bauer, 2011]

Morse function

イロン イロン イヨン イヨン 三日

5

 $f : \mathbb{R}^2 \to \mathbb{R}$ – a smooth function. Point p is critical if $\nabla f(p) = 0$, and non-degenerate if $||\mathcal{H}_f(p)|| = ||d^2f/dx_i dx_j(p)|| \neq 0$. f is a Morse function if all its critical points are non-degenerate.

Critical points classification

Morse index of a critical point – number of independent unstable directions. Neighbourhood of a critical point locally is $f(p) \pm x^2 \pm y^2$.

Critical points: maxima, saddles, and minima.

Integral lines, Ascending and descending manifolds

Morse-Smale complex obtained by intersecting of ascending and descending manifolds. [Sousbie, 2010]

Extension to the discrete case

Magnetogram data is given on a discrete domain. We need a generalization of Morse theory concepts for function $f : \mathbb{Z}^2 \to \mathbb{R}$. [Forman, 1998]

Discrete Morse Function

Construct a cell complex, assign values to cells.

Maxima are quads, saddles are edges, minima are vertices.

Discrete gradient field

Two cells $\sigma < \tau$ form a gradient arrow $\langle \sigma, \tau \rangle$ if $f(\tau) \leq f(\sigma)$. All cells, except critical, are paired into gradient arrows.

Cells 1, 12, and 15 are critical (minimum, saddle, and maximum, respectively).

Discrete Morse-Smale Complex

Discrete gradient field of function $f(x, y) = \sin \alpha x + \sin \beta y$ defined on evenly-spaced grid

Morse-Smale complex of function f

Persistence of Topological Features (1D)

y = f(x)

ŝ,

Persistence of Topological Features (2D)

[Günther, 2012]

Persistence pair elimination

Morse-Smale Complexes of Active Regions I

Morse-Smale Complexes of Active Regions I

<回><週><注><注><注><注><注<注<15

Morse-Smale Complexes of Active Regions I

<ロ><母><き><き><き><き> 15

Morse-Smale Complexes of Active Regions II

Morse-Smale Complexes of Active Regions II

Morse-Smale Complexes of Active Regions II

Morse-Smale Complexes of Active Regions III

Morse-Smale Complexes of Active Regions III

Morse-Smale Complexes of Active Regions III

The last slide

