

HIGHLIGHTS FROM RUN 1 AND A GLIMPSE OF RUN 2 PHYSICS AT THE LHC

@KyleCranmer

New York University Department of Physics Center for Data Science

Run-1 Data

Kyle Cranmer (NYU)

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

expected number of scatterings = cross section [cm²] x Luminosity [1/cm²]

AN IMPRESSIVE PHYSICS PROGRAM

3

... in a difficult environment

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

SM Higgs @ the LHC

LHC HIGGS XS WG 2010

[dd]

1000 M_H [GeV]

<u>s= 14 Te</u>

SM Higgs @ the LHC

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

SM Higgs @ the LHC

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Disentangling multiple production modes

∎ggF VBF WH **7**H ttH **ATLAS** Preliminary (simulation) $H \rightarrow \gamma \gamma$ Inclusive Unconv. central low p _{Tt} ATLAS Preliminary Unconv. central high p T_{Tt} Unconv. rest low $p_{Tt}^{''}$ Data 2012, $\sqrt{s} = 8 \text{ TeV}$ Unconv. rest high p $_{Tt}$ $Ldt = 20.7 \text{ fb}^{-1}$ Conv. central low $p_{T_t}^{ii}$ Conv. central high p_{Tt}^{\prime} Conv. rest low p_{τ_t} $H \rightarrow \gamma \gamma$ Conv. rest high p_{T_t} m_µ = 126.8 GeV Conv. transition Loose high-mass two-jet Tight high-mass two-jet Low-mass two-jet E_{T}^{miss} significance One-lepton 30 80 90 100 -2 50 60 10 20 70 40 0 0 2 10 8 6 4 signal composition (%) B x Signal strength

Number of events is proportional to production "signal strength" **µ** x decay Branching Ratio **B**

Number of events is proportional to production "signal strength" **µ** x decay Branching Ratio **B**

ATLAS-CONF-2015-044 see talk by Daniela Rebuzzi

Example Coupling results

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Example Coupling results

ATLAS-CONF-2015-044 see talk by Daniela Rebuzzi

ATLAS SUSY Searches* - 95% CL Lower Limits

Other

A	TLAS SUSY Se	arches	s* - 9:	5% (CL L	ower Limits	ATL	AS Preliminary
St	atus: ICHEP 2014 Model	e, μ, τ, γ	′ Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fl	D ⁻¹] Mass limit		$\sqrt{s} = 7, 8 \text{ TeV}$ Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}\bar{q}, \overline{q} \rightarrow q \tilde{X}_{1}^{0} \\ \overline{g}\bar{s}, \overline{g} \rightarrow q \overline{q} \tilde{\chi}_{1}^{0} \\ \overline{g}\bar{s}, \overline{g} \rightarrow q \overline{q} \tilde{\chi}_{1}^{0} \\ \overline{g}\bar{s}, \overline{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \overline{g}\bar{g}, \overline{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GMSM} (k \text{ NLSP}) \\ \text{GGM} (wino \text{ NLSP}) \\ \text{GGM} (wino \text{ NLSP}) \\ \text{GGM} (higgsino-bino \text{ NLSP}) \\ \text{GGM} (higgsino \text{ NLSP}) \\ \text{Gravitino \text{ LSP}} \\ \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ r + 0 \ 1 \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 0-3 jets 2-4 jets ℓ 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 4.7 20.3 4.8 4.8 5.8 10.5		$\begin{array}{l} m(\tilde{q}) = m(\tilde{g}) \\ any \ m(\tilde{q}) \\ any \ m(\tilde{q}) \\ m(\tilde{x}^0) = 0 \ \text{GeV}, \ m(1^{st} \ \text{gen.} \ \tilde{q}) = m(2^{nd} \ \text{gen.} \ \tilde{q}) \\ m(\tilde{x}^0) = 0 \ \text{GeV} \\ m(\tilde{x}^0) = 0 \ \text{GeV} \\ m(\tilde{x}^0) = 0 \ \text{GeV} \\ tan\beta < 20 \\ m(\tilde{x}^0) > 50 \ \text{GeV} \\ m(\tilde{x}^0) > 50 \ \text{GeV} \\ m(\tilde{x}^0) > 50 \ \text{GeV} \\ m(\tilde{x}^0) > 200 \ \text{GeV} \\ m(\tilde{x}^0) > 10^{-4} \ \text{eV} \\ \end{array}$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2012-1401 ATLAS-CONF-2012-147 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ẽ med.	$ \begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{\chi}_{1}^{+} \end{array} $	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\$\tilde{s}\$ 1.25 TeV \$\tilde{s}\$ 1.1 TeV \$\tilde{s}\$ 1.34 TeV \$\tilde{s}\$ 1.3 TeV	$\begin{split} &m(\tilde{x}_{1}^{0}){<}400 \; \text{GeV} \\ &m(\tilde{x}_{1}^{0}) <{}350 \; \text{GeV} \\ &m(\tilde{x}_{1}^{0}){<}400 \; \text{GeV} \\ &m(\tilde{x}_{1}^{0}){<}300 \; \text{GeV} \end{split}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow \tilde{\chi}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{light}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{r}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{light}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{inglut}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{medium}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{measy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{heavy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{\ell}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{k} \tilde{r}_1^- \\ \tilde{r}_1 \tilde{r}_1 (\text{neasy}), \ \tilde{r}_1 \rightarrow \tilde{r}$	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 b 1 b 2 b mono-jet/c-tr 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3	\tilde{b}_1 100-620 GeV \tilde{b}_1 275-440 GeV \tilde{i}_1 110-167 GeV \tilde{i}_1 130-210 GeV \tilde{i}_1 130-210 GeV \tilde{i}_1 150-580 GeV \tilde{i}_1 210-640 GeV \tilde{i}_1 260-640 GeV \tilde{i}_1 90-240 GeV \tilde{i}_2 290-600 GeV	$\begin{split} &m(\tilde{\chi}_{1}^{0}){<}90~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}2~m(\tilde{\chi}_{1}^{0}) \\ &m(\tilde{\chi}_{1}^{0}){=}55~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}1~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}1~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}150~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}150~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}200~GeV \\ \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,\mathbf{R}}\tilde{\ell}_{L,\mathbf{R}},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1},\tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1},\tilde{\chi}_{1}^{*} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \tilde{\ell}_{1}\nu_{\ell}^{*}\ell(\ell\tilde{\nu}\nu), \ell\tilde{\nu}_{\ell}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow W\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow W\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{3}^{*}, \tilde{\chi}_{2}^{*} \rightarrow W\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{3}^{*}, \tilde{\chi}_{2}^{*} \rightarrow W\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{3}^{*}, \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \end{array} \right) $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 - 0 0 2 b 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} & (\tilde{t}_{1}^{0})=0 \ \text{GeV} \\ & m(\tilde{t}_{1}^{0})=0 \ \text{GeV}, m(\tilde{\epsilon},\tilde{\nu})=0.5(m(\tilde{k}_{1}^{\pm})+m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0})=0 \ \text{GeV}, m(\tilde{\epsilon},\tilde{\nu})=0.5(m(\tilde{k}_{1}^{\pm})+m(\tilde{k}_{1}^{0})) \\ & n(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, m(\tilde{\epsilon},\tilde{\nu})=0.5(m(\tilde{k}_{1}^{\pm})+m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{\pm})=m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, \ \text{sleptons decoupled} \\ & n(\tilde{k}_{1}^{0})=m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0.5(m(\tilde{k}_{2}^{0})+m(\tilde{k}_{1}^{0})) \\ \end{array}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{\sigma}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ , displ. vt	1 jet 1-5 jets - tx -	Yes Yes Yes	20.3 27.9 15.9 4.7 20.3	X [±] 270 GeV 832 GeV ATL X ⁰ 475 GeV Status X ⁰ 230 GeV 1.0 TeV	AS Exotics Searche	es* - 95% CL
Vdb	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{0}^{0}, \tilde{\chi}_{0}^{0} \rightarrow ee \tilde{v}_{\mu}, e\mu \tilde{v}_{e}$	$ \begin{array}{c} 2 e, \mu \\ 1 e, \mu + \tau \\ 2 e, \mu \text{ (SS)} \\ 4 e, \mu \end{array} $	0-3 b	- Yes Yes	4.6 4.6 20.3 20.3	\$\vec{v}_r\$ 1.1 TeV AL \$\vec{q}\$, \$\vec{s}\$ 1.35 AL \$\vec{x}_1^{\pm}\$ 750 GeV AL	$\begin{array}{c} \text{DD } G_{KK} + g/q & -\\ \text{DD } non-resonant \ \ell & 2e, \mu \\ \text{DD } QBH \rightarrow \ell q & 1e, \mu \end{array}$	1-2 j Yes 4.7 20.3 1 j - 20.3

but what have you done for me lately?

1-IIV	Stable, stopped \tilde{g} R-hadron	0	1-5 jets	Yes	27.9	<u>ğ</u> 832 GeV	ATLAS Exotics Se	earche	es* -	95% (CLI	Exclusion	ATL/	4S Preliminary
pari	GMSB, stable $\tau, \chi_1 \rightarrow \tau(e, \mu) + \tau(e)$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	4.7	x ₁ x ₁ 230 GeV	Status: ICHEP 2014						$\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$	\sqrt{s} = 7, 8 TeV
	$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu \text{ (RPV)}$	1 μ, displ. vtx	-	-	20.3	φ 1.0 TeV	Model	<i>ℓ</i> , γ	Jets	$E_T^{miss} \int \mathcal{L}$	dt[fb	⁻¹] Mass limit	-	Reference
RPV	$ \begin{array}{l} {} {} {} {} {} {} {} {} {} {} {} {} {}$	$2 e, \mu 1 e, \mu + \tau 2 e, \mu (SS) 4 e, \mu 3 e, \mu + \tau 0 2 e, \mu (SS)$		Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	Vr. 1.1 TeV \tilde{v}_r 1.1 TeV \tilde{a} . \tilde{s} 1.35 $\tilde{\chi}_1^+$ 750 GeV $\tilde{\chi}_1^+$ 450 GeV \tilde{s} 916 GeV \tilde{s} 850 GeV	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH ADD QBH BH high N_{trk} G ADD BH high $\sum p_T$	$\begin{array}{c} -\\ 2e, \mu\\ 1 e, \mu\\ -\\ 2 \mu \text{ (SS)}\\ \geq 1 e, \mu \end{array}$	1-2j - 1j 2j - ≥2j	Yes - 2 - 2 - 2 - 2 - 2 - 2	4.7 20.3 20.3 20.3 20.3 20.3 20.3	MD 4.37 TeV Ms 5.2 TeV Mth 5.7 TeV Mth 6.2 TeV	n = 2 n = 3 HLZ n = 6 n = 6 $n = 6$, $M_D = 1.5$ TeV, non-rot BH $n = 6$, $M_D = 1.5$ TeV, non-rot BH	1210.4491 ATLAS-CONF-2014-030 1311.2006 to be submitted to PRD 1308.4075 1405.4254
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ) $\sqrt{s} = 7 \text{ TeV}$	$2 e, \mu (SS)$ 0 $\sqrt{s} = 8 \text{ TeV}$	4 jets 2 b mono-jet $\sqrt{s} = 8$	- Yes Yes 3 TeV	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV 10-1 1	$ \begin{array}{c} \label{eq:states} & \text{RS1} \; G_{KK} \rightarrow \ell\ell \\ & \text{RS1} \; G_{KK} \rightarrow WW \rightarrow \ell\nu\ell\nu \\ & \text{Bulk} \; \text{RS} \; G_{KK} \rightarrow ZZ \rightarrow \ell\ell qq \\ & \text{Bulk} \; \text{RS} \; G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b} \\ & \text{Bulk} \; \text{RS} \; g_{KK} \rightarrow t\bar{t} \end{array} $	2 e,µ 2 e,µ 2 e,µ - 1 e,µ ≥	- 2 j / 1 J 4 b :1 b, ≥ 1J/	- 2 Yes - 2 - 1 2j Yes 1	20.3 4.7 20.3 9.5 4.3	G _{KK} mass 2.68 TeV G _{KK} mass 1.23 TeV G _{KK} mass 730 GeV G _{KK} mass 590-710 GeV B _{KK} mass 2.0 TeV	$k / \overline{M}_{Pl} = 0.1$ $k / \overline{M}_{Pl} = 0.1$ $k / \overline{M}_{Pl} = 1.0$ $k / \overline{M}_{Pl} = 1.0$ BR = 0.925	1405.4123 1208.2880 ATLAS-CONF-2014-039 ATLAS-CONF-2014-005 ATLAS-CONF-2013-052
	full data	partial data	full d	lata		10	S ¹ /Z ₂ ED UED	2 e,μ 2 γ	_	- Yes	5.0 4.8	M _{KK} ≈ R ⁻¹ 4.71 TeV Compact. scale R ⁻¹ 1.41 TeV		1209.2535 ATLAS-CONF-2012-072
*On	ly a selection of the availab	le mass limit	s on new	states	or phei	enomena is shown. All limits quoted are observed minus 1 σ theo.	$\begin{array}{c} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{SSM } W' \to \ell\nu \\ \text{EGM } W' \to WZ \to \ell\nu \ell'\ell' \\ \text{EGM } W' \to WZ \to qq\ell\ell \\ \text{EGM } W' \to WZ \to qq\ell\ell \\ \text{LRSM } W'_R \to t\overline{b} \\ \text{LRSM } W'_R \to t\overline{b} \end{array}$	2 e, μ 2 τ 1 e, μ 3 e, μ 2 e, μ 1 e, μ 0 e, μ	- - 2 j / 1 J 2 b, 0-1 j ≥ 1 b, 1 J	- 2 - 1 Yes 2 Yes 2 - 2 Yes 1 - 2	20.3 19.5 20.3 20.3 20.3 20.3 14.3 20.3	Z' mass 2.9 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.64 TeV W' mass 1.84 TeV W' mass 1.77 TeV		1405.4123 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 1406.4456 ATLAS-CONF-2014-039 ATLAS-CONF-2013-050 to be submitted to EPJC
							Cl qqqq Cl qqqℓ Cl qutt	2 e, μ 2 e, μ (SS)	2 j _ ≥ 1 b, ≥ 1 j	- - 2 j Yes 1	4.8 20.3 4.3	Λ 7.6 TeV Λ Λ 3.3 TeV	$\eta = +1$ 21.6 TeV $\eta_{LL} = -1$ C = 1	1210.1718 ATLAS-CONF-2014-030 ATLAS-CONF-2013-051
							EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ	1-2 j 1 J, ≤ 1 j	Yes 1 Yes 2	10.5 20.3	M, 731 GeV M, 2.4 TeV	at 90% CL for $m(\chi) < 80$ GeV at 90% CL for $m(\chi) < 100$ GeV	ATLAS-CONF-2012-147 1309.4017
							Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	$\ge 2 j$ $\ge 2 j$ 1 b, 1 j		1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$\beta = 1$ $\beta = 1$ $\beta = 1$	1112.4828 1203.3172 1303.0526
							Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $TT \rightarrow 2t + X$ Vector-like quark $BB \rightarrow 2b + X$ Vector-like quark $BB \rightarrow Wt + X$	1 <i>e</i> , μ 1 <i>e</i> , μ 2/≥3 <i>e</i> , μ 2/≥3 <i>e</i> , μ 2 <i>e</i> , μ (SS)	$\geq 2 \text{ b}, \geq 4 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 1 \text{ j}$	j Yes 1 j Yes 1 - 2 - 2 j Yes 1	14.3 14.3 20.3 20.3 14.3	T mass 790 GeV T mass 670 GeV T mass 735 GeV B mass 755 GeV B mass 720 GeV	T in (T,B) doublet isospin singlet T in (T,B) doublet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2014-036 ATLAS-CONF-2014-036 ATLAS-CONF-2013-051
							Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e,μ 1 2 e,μ, 1 γ	1 j 2 j I b, 2 j or 1 –	- 2 - 2 jYes - 1	20.3 20.3 4.7 13.0	q* mass 3.5 TeV q* mass 4.09 TeV b* mass 870 GeV ℓ* mass 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$	1309.3230 to be submitted to PRD 1301.1583 1308.1364
							LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e, \mu$ $2 e, \mu$ (SS) $-$ $-$ $\sqrt{S} = 7$	- 2 j - - - 7 TeV	Yes 2 - - - - √s = 8 Te	20.3 2.1 5.8 4.7 4.4 2.0 eV	ar mass 960 GeV N [®] mass 1.5 TeV N [®] mass 245 GeV H ^{±±} mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV 10 ⁻¹ 1	$\begin{split} m(W_R) &= 2 \text{ TeV, no mixing} \\ V_e =0.055, V_e =0.063, V_e =0 \\ \text{DY production, } R (H^{\pm\pm} \to \ell \ell) = 1 \\ \text{DY production, } q &= 4e \\ \text{DY production, } g &= 1g_D \\ \hline 10 \\ \textbf{Mass scale [TeV]} \end{split}$	to be submitted to PLB 1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411
							*Only a selection of the available	mass limit	s on new	states or	pheno	omena is shown.		

PMSSM SCAN

Massive scan of 19-parameter phenomenological MSSM based on 22 ATLAS SUSY Searches

PMSSM SCAN

Massive scan of 19-parameter phenomenological MSSM based on 22 ATLAS SUSY Searches

14

SEARCHING FOR DARK MATTER

"mono-X" searches look for some particle X and large missing transverse momentum from escaping dark matter χ

HIGGS+ DARK MATTER ("MONO-HIGGS")

NEW PHYSICS WITH \geq 3 PHOTONS

DI-BOSON RESONANCE SEARCHES

DI-BOSON RESONANCE SEARCHES

 $\sigma(pp \rightarrow W') \times BR(W' \rightarrow WZ)$ [fb] $\sigma_{95\%}$ (pp ightarrow G_{bulk}) [pb] 10⁴ ATLAS Observed 95% CL $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ Expected 95% CL 10³ \pm 1 σ uncertainty $\pm 2\sigma$ unceirtainty 10² EGM W', c = 110⁻¹ 10 E 1 10⁻² 600 10 2.2 2.6 2.8 1.8 2 2.4 1.6 1.4 3 $m_{W'}$ [TeV]

CMS arXiv:1405.3447

DI-BOSON RESONANCE SEARCHES

CMS: WW $\rightarrow \ell \nu J$

ATLAS: WW→JJ

NEW COMBINATION WITH LEPTONIC SEARCHES

$\begin{tabular}{ c c c c } \hline Channel \\ \hline \ell \nu \ell' \ell' \\ \hline \ell \ell q \bar{q} \\ \hline \ell \nu q \bar{q} \\ \hline \ell \nu q \bar{q} \\ \hline I I \\ \hline \end{array}$	Signal Regionlow-masshigh-masslow- resolvedhigh- resolvedhigh- resolvedlow- resolvedhigh- resolvedmerged WZ selection $WW \pm ZZ$ selection	$\begin{array}{c c} W' \text{ mass range [TeV]} \\ \hline 0.2\text{-}1.9 \\ 0.2\text{-}2.5 \\ \hline 0.3\text{-}0.9 \\ 0.6\text{-}2.5 \\ \hline 0.9\text{-}2.5 \\ \hline 0.3\text{-}0.8 \\ 0.6\text{-}1.1 \\ 0.8\text{-}2.5 \\ \hline 1.3\text{-}3.0 \\ \hline \end{array}$	G^* mass range [TeV] 	< BR(W' → ZW) [pb]	10 ²	ATLAS Prelin √s = 8 TeV ∫ L dt = 20.3 f	fb ⁻¹	Combined E Combined O JJ Expected JJ Observed Ivqq Expect Ivqq Dbserved Ilqq Dbserved Ilqq Observed	xpected bserved l ed ved d ed	
EGM (ob 2 Te ^v	W' exclude served equ	ed below 1.8 als expected ficance 3.4	TeV I limit) 2.5 σ	α(pp → W') >	10 ⁻¹	All limits at 95	5% CL 1000	/ <i>v/'i</i> ' Expecte / <i>v/'i</i> ' Observe	ed ed 2000	2500
$\alpha(pp \rightarrow W') \times BR(W' \rightarrow ZW) [bb]$	S-CONF-2015 10^{2} $f = 47LAS$ Provide the set of	5-045 eliminary EGM 1 3 fb ⁻¹ Obser ± 1 σ u ± 2 σ t Channels Combin	W, c = 1, Leading Order ted 95% CL ved 95% CL uncertainty uncertainty hed: $ v ' ' + q\bar{q} + vq\bar{q} + JJ$ ' limits	Terr Image: 1 Image: 1 Image	$\begin{bmatrix} qd \\ 10^{2} \\ *5 \end{bmatrix} H \times (*5 + dd) $	ATLAS Preliminary $\sqrt{s} = 8 \text{ TeV}$ $\int L dt = 20.3 \text{ fb}^{-1}$ 500 10	Bulk RS Bulk RS Bulk RS Bulk RS Channels Combined G Channels Combined G D00 150	S graviton $k/\overline{M}_{PI} = 1$, Leaded 95% CL and 95% CL accertainty the certainty the	m	_{N'} [GeV]

Run 2 at 13 TeV

The main 2013-14 LHC consolidations

Opening:100% 1695 Openings and final reclosures of the interconnections

Closure: 100%

100 % done

Quality Assurance tests

100 % done

Complete reconstruction of 3000 of these splices

100 % done 10170 leak tightness tests **100 % done** Consolidation of the 10170 13kA splices,

installing 27 000 shunts

100 % done Installation of 5000 consolidated electrical insulation systems 100 % done 300 000 electrical resistance measurements 100 % done 10170 orbital welding of stainless steel lines

3 quadrupole magnets to be replaced

Done

15 dipole magnets to be replaced

Done

100 % done Installation of 612 pressure relief devices to bring the total to 1344

100 % done Consolidation of the 13 kA circuits in the 16 main electrical feedboxes

LHC AT 13 TEV

After a somewhat slow start, the LHC has picked up pace.

Now running with 25 ns bunch spacing

Peak luminosity of 3.8 x 10³³ /cm² s !

PILE-UP

25 ns spacing helps a lot with pile-up

50

Impact of going from $8 \rightarrow 13$ TeV depends on the physics you want to study: it's a huge improvement for heavy particles

Impact of going from $8 \rightarrow 13$ TeV depends on the physics you want to study: it's a huge improvement for heavy particles

Next 3 years vs. All of Run 1

http://collider-reach.web.cern.ch

TRACKING PERFORMANCE IMPROVEMENTS

b-jet efficiency

TOP PAIR PRODUCTION @ 13 TEV

In Run1, the most precise measurements provided by dilepton (eµ) channel due to smaller systematic uncertainties related to Missing transverse energy and jets.

1 electron

W

267638 t: 193690558

015-06-13 23:52:26 CEST

SEARCHES FOR DI-JET RESONANCES

Di-jet resonances provide early discovery potential

Run: 276731 Event: 876578955 2015-08-22 07:43:1

Mjj = 6.9 TeV !

 \mathcal{D}

CONCLUSIONS

Run 1 was a huge success

The ATLAS detector is ready for Run 2

2015 will be a commissioning year for 25 ns operation.

Goal of 100 fb⁻¹ by end of 2018

ATLAS has made first measurements and searches at 13 TeV.

For favorable scenarios, Run 1 some results have already been extended. Other searches will need more time & luminosity.