

Geo-neutrino results with Borexino

-- **Romain Roncin** on behalf of the Borexino Collaboration --Laboratori Nazionali del Gran Sasso

International Conference on Particle Physics and Astrophysics 2015

October 06, 2015

-- Why geo-neutrinos? --

-- Geo-neutrinos are messengers from the Earth interior --> Especially of interest for the mantle knowledge

-- Radioactive decays inside the crust and the mantle of the Earth --> 238 U, 235 U, 232 Th decay series as well as 40 K decay are involved and produced $\nu_{\rm e}$ and anti- $\nu_{\rm e}$ called geo-neutrinos

-- Differents Earth models exist (cosmochemical, geochemical, geodynamical etc...) and do not agree between themselves

--> Geo-neutrinos as a new source of information

-- Geo-neutrino measurements

--> KamLAND (Nature **436**, 499-503 (2005), Phys. Rev. D **88**, 033001 (2013))

--> Borexino (Phys. Lett. B **687**, 299-304 (2010), Phys. Lett. B **722**, 295-300 (2013), Phys. Rev. D **92**, 031101 (2015))

-- Which geo-neutrinos? --

-- Anti- $\nu_{\rm e}$ detection through inverse β decay interactions --> Threshold at 1.8 MeV

	238 U	$^{235}\mathrm{U}$	²³² Th	${}^{40}{ m K}(ar{ u}_e)$	$^{40}{ m K}(u_e)$
$ au_{1/2}$ (year)	4.47×10^9	7.04×10^8	1.40×10^{10}	1.28×10^9	1.28×10^9
$Q~({ m MeV})$	51.7	46.4	42.7	1.311	1.505
$Q_{ar{ u}_e}~(\mathrm{pJ})$	0.634	0.325	0.358	0.103	-
$\# \ ar{ u}_e$	6	4	4	1	-
$\mathcal{R}_{ar{ u}_e}\left(ar{ u}_e/(\mathrm{g}\cdot\mathrm{s}) ight)$	7.46×10^4	3.20×10^5	1.63×10^4	2.31×10^5	-
$\# \nu_e$	-	-	-	-	1
$\mathcal{R}_{ u_e}\left(u_e/(\mathrm{g}\cdot\mathrm{s}) ight)$		-	<u> </u>	-	2.77×10^4
$E_{\rm max}$ (MeV)	3.26	1.23	2.25	1.311	0.044

-- Only anti- v_e from ²³⁸U and ²³²Th decay series can be detected

-- Geo-neutrinos oscillation? --

-- Anti-V_e from ²³⁸U and ²³²Th do oscillate --> Survival probability of the geo-neutrinos:

$$P_{ee} = \cos^4 \theta_{13} \left(1 - \sin^2(2\theta_{12}) \sin^2 \left(1.27 \, \frac{\Delta m_{21}^2 (\text{eV}^2) L(\text{m})}{E(\text{MeV})} \right) \right) + \sin^4 \theta_{13}$$

-- Oscillation length around 100 km << R_{Earth}

--> Reasonable assumption of an averaged survival probability:

$$\langle P_{ee} \rangle = \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \right) + \sin^4 \theta_{13} = 0.55 \pm 0.03$$

-- **WARNING:** not used for anti- $\nu_{\rm e}$ from nuclear reactors (individual calculations)

Mixing angles and mass square differences are taken from Phys. Rev. D **89**, 093018 (2014)

-- Detecting anti- v_e --

-- Anti- v_{e} detection through inverse β decay interactions

-- The Borexino detector --

-- Selecting anti-v_e --

-- 2 s dead time window applied after an internal muon and 2 ms dead time window applied after an external muon

-- No neutron event in the 2 ms time window before the prompt signal and in the 2 ms time window after the delayed signal

77 candidates

(2056 days of data taking between December 2007 and March 2015, 1842 days after muon cuts, exposure of 5.5×10³¹ proton×year)

-- Anti-v_e energy spectra --

-- $Q_{\rm prompt}$ spectrum contains both the geo-neutrino and the anti- $\nu_{\rm e}$ from nuclear reactors (and the backgrounds)

--> Since $E_{max}(^{238}U) = 3.26$ MeV and $E_{max}(^{232}Th) = 2.25$ MeV, geoneutrinos stand in the 4 first bins of the Q_{prompt} spectrum

Very low background (except for reactor background)!

-- Reactor background --

-- Anti- $\nu_{\rm e}$ from nuclear reactors are the main background (despite Italy is a nuclear free country)

-- Estimation of the expected number of events from the spectral components of 235 U, 238 U, 239 Pu and 241 Pu

Detector-reactor distance Power fraction of component *i*

Effective thermal power of reactor *r* in month *m* Average energy released per fission of component *i*

-- Monte Carlo have been developed in order to take into account the 446 nuclear reactors running during the period of interest

-- Unbinned maximum likelihood fit of the prompt energy spectrum of our anti- v_e candidates (background components constrained)

*1 TNU = 1 event detected over 1 year exposure of 10³² target protons at 100 % efficiency

-- Fit analysis with U and Th left free --

-- Fit leaving the U and Th spectral contributions as free parameters

-- BSE geological models --

-- Bulk Silicate Earth (BSE) models describe both the crust and the mantle

- -- Different BSE models:
 - 1) Cosmochemical
 - 2) Geochemical
 - 3) Geodynamical

BSE S _{geo} [TNU]		Model	
- Low -	- High -		
23.6	31.44	Javoy et al. (2010) (a)	
26.6	35.24	Lyubetskaya & Korenaga (2007) (b)	
28.4	37.94	McDonough & Sun (1995) (c)	
28.4	37.94	Allegre et al. (1995) (d)	
29.6	39.34	Palme & O'Neil (2004) (e)	
33.3	44.24	Anderson (2007) (f)	
35.1	46.64	Turcotte & Schubert (2002) (g)	

-- Radiogenic heat --

-- Understanding the Earth's energy budget

-- Radiogenic heat production for U and Th between 23 and 36 TW

-- Assuming a chondritic ratio of 3.9 and $m(K)/m(U) = 10^4$, the total terrestrial radiogenic power is:

$\label{eq:power} \begin{array}{l} \mathbf{P}(\mathbf{U}+\mathbf{Th}+\mathbf{K})=\mathbf{33^{+28}}_{-\mathbf{20}}\ \mathbf{TW} \\ \text{(to be compared with the global terrestrial power } \mathbf{P}_{\mathrm{tot}}=47\pm2\ \mathrm{TW}) \end{array}$

Romain Roncin @ International Conference on Particle Physics and Astrophysics 2015

-- Accessing geo-neutrinos from the mantle --

-- Measured signal = BSE signal = crust signal + mantle signal where crust* = local crust (LOC) + rest of the crust (ROC)

-- Borexino:

$$-S_{geo} (total) = 43.5^{+12.1} - 10.7 TNU - S_{geo} (crust) = 23.4 \pm 2.8 TNU - S_{geo} (crust) = 23.4 \pm 2.8 TNU$$

-- KamLAND:

- S_{geo} (mantle) = 5.0 ± 7.3 TNU

The hypothesis that S_{geo} (mantle) = 0 is rejected at 98% C.L.

*Investigated in Coltorti *et al.* Geochim. Cosmochim. Acta **75**, 2271 (2011) and Huang *et al.* Geochem., Geophys., Geosyst. **14**, 2003-2029 (2013)

-- Investigation on a possible georeactor (new!) --

Is there a natural nuclear reactor standing inside the Earth?

-- Monte Carlo built such that $^{235}U/^{238}U = 0.75/0.25$ (Pu set to 0)

-- Fit above 1510 p.e. in order to get rid of the geo-neutrino spectrum

-- Background components normalized, reactor component constrained to

the theoretical value

Romain Roncin @ International Conference on Particle Physics and Astrophysics 2015

-- Conclusion --

-- We report an updated measurement of geo-neutrinos with Borexino

- -- From 2056 days of data taking, Borexino alone is able:
 - --> to reject the null geo-neutrino signal at 5.9 σ
 - --> to claim a geo-neutrino signal from the mantle at 98% C.L.

--> to restrict the radiogenic heat production for U and Th between 23 and 36 TW $\,$

- -- Signal-to-background ratio of the order of 100
 - --> Real time spectroscopy of anti- v_e

-- Upper limit for a 3.4 TW georeactor (4.2 TW) at 90% C.L. (95% C.L.)

Thank you for your attention

²³⁸U decay chain --

-- ²³²Th decay chain --

