Charmonium and charmoniumlike states: present and future

Galina Pakhlova

ICPPA, October 7, 2015, Moscow, Russia

Charmonium in standard quark model

 $(n+1)^{(2S+1)}L_{J}$

- n radial quantum number
- S total spin of quarkantiquark
- L relative orbital ang. mom.
 - L = 0, 1, 2 ... corresponds to S, P, D...
- J = S + L
- $P = (-1)^{L+1}$ parity
- $C = (-1)^{L+S}$ charge conj.

1974 -1980 Discovery of 10 standard charmonium states
1980-2002 ... nothing
2002-2013 Discovery of 6 standard charmonium states

B factories

Belle: 8 GeV (e⁻) × 3.5 GeV (e⁺) designed luminosity: 10.0×10^{33} cm⁻²s⁻¹ achieved 21.2×10^{33} cm⁻²s⁻¹ (>2 times larger!)

Luminosity at B factories

Belle completed data taking in 2010 to start SuperKEKB/Belle II upgrade

Charm factories

BESIII

Symmetric e⁺e⁻ collider

 $e^+e^- \rightarrow J/\psi, \psi(2S), \psi(3770), etc$ scan 2.0 - 4.6 GeV $L \sim 10^{33}/cm^2/s$ $E \sim 7 \text{ TeV: } L \sim 5 \text{ fb}^{-1} \text{ per experiment}$ $E \sim 8 \text{ TeV: } L \sim 20 \text{ fb}^{-1} \text{ per experiment}$

LHC

pp collider

LHCb $E \sim 7-8$ TeV: $L \sim 3$ fb⁻¹

B meson decays

Charmonium Prompt production Beauty hadrons decays

Charmonium production at B factories

γγ fusion

Any quantum numbers are possible, can be measured in angular analysis (Dalitz plot)

 $J^{PC} = 0^{\pm +}, 2^{\pm +}$

 e^+e^- annihilation with ISR

 $J^{PC} = 1^{--}$

double charmonium production

in association with J/ψ only $J^{PC} = 0^{\pm +}$ seen

Observation of $\eta_c(2S)$ **and** h_c

To be done

 η_c : new decay modes, absolute BR measurements, improve mass, total width and $\Gamma_{\gamma\gamma}$

 h_c : search in three body B decays: B $\rightarrow h_c K\pi...$

- $\eta_c(2S)$ first observed by Belle in B decays and in double charmonium production. Confirmed by CLEO, BaBar&Belle in $\gamma\gamma$
- h_c first observed by CLEO

For both $\eta_c(2S)$ and h_c the properties are in good agreement with the potential model expectations

- mass, total width, decays modes, γγ-width

Charmonium table below DD threshold is completed!

Decay mode, helicity distribution, $\Gamma_{\gamma\gamma}$ width prove out: $Z(3940) = \chi_{c2}(2P) = 2^{3}P_{2}$

Mass is $\sim 50-100 \text{ M} \Rightarrow B/c^2$ lighter than expected $\gamma\gamma \rightarrow Z(3940) = \chi_{c2}(2P)$

Helicity distribution favors J=2

Confirmed by BaBar

To be done

Improve parameters, search in multi-body B decays

Exp.	Process	Luminosity	Mass	Width	Spin	$\Gamma_{\gamma\gamma}(\chi_{c2}(2P)) \times$
						$\mathcal{B}(\chi_{c2}(2P) \to D\overline{D})$
		$({\rm fb}^{-1})$	(MeV/c^2)	(MeV $)$	J^{PC}	(keV)
Belle	$\gamma\gamma \to D\overline{D}$	395	$3929 \pm 5 \pm 2$	$29 \pm 10 \pm 2$	2^{++}	$0.18 \pm 0.05 \pm 0.03$
BABAR	$\gamma\gamma ightarrow D\overline{D}$	384	$3926.7 \pm 2.7 \pm 1.1$	$21.3 \pm 6.8 \pm 3.6$	2^{++}	$0.24 \pm 0.05 \pm 0.04$

To be done

Critical prove at Belle II

• To measure X(3823) decays to $J/\psi \pi^+\pi^$ and $\chi_{c2}\gamma$ final states and to compare with theoretical predictions for $\psi(1^3D_2)$ *Observation mode with two gammas in the final state is difficult for LHCb*

 $X(3823) = \psi(1^{3}D_{2})$ $X(3823) \rightarrow \chi_{c1}\gamma$ 1+-3-- $\psi_2 \qquad \psi_3 \rightarrow DD$ Ψ(3770) $h_c(2P)$ decay to DD is forbidden due to unnatural spin-parity \rightarrow small Γ decay to $\chi_{c1}\gamma$ should be prominent (E1) $\Gamma(\chi_{c1} \gamma) \sim O(10 \text{KeV})$ is typical for charmonium ${}^{3}S_{1}$ 4,75 4,50

To be done

- Angular analysis for solid identification
- Search in B decays

 $J^{PC}=0^{-+}$ $X(3940) = 3^{1}S_{0} = \eta_{c}(3S)$ $X(4160) = 4^{1}S_{0} = \eta_{c}(4S)$ Decays to open charm like standard charmonium

Mass of X(3940) &X(4160) are ~100-150 (250-300) MeV lower than the masses predicted by the potential models for $\eta_c(3S)$ and $\eta_c(4S)$

Theory probably needs more elaborate models to take into account charmonia couplings to meson pairs

New charmoniumlike spectroscopy

Exotic charmoniumlike states

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

Multiquark states

UC U

February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN

California Institute of Technology, Pasadena, California A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) g and the members of the anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

A formal mathematical model based on field theory can be built up for the quarks exactly as for p, n, Λ in the old <u>Sakata model</u>, for example 3) with all strong interactions ascribed to a neutral vector meson field interacting symmetrically with the three particles. Within such a framework, the <u>Tetraquark</u>

tightly bound four-quark state

Molecular state

two loosely bound charm mesons

Hydronic molecules and the charmonium atom

M. B. Voloshin and L. B. Okun'

Institute of Theoretical and Experimental Physics (February 16, 1976) Pis'ma Zh. Eksp. Teor. Fiz. 23, No. 6, 369–372 (20 March 1976)

March 1976

We consider the possible existence of levels in a system consisting of a charmed particle and a charmed antiparticle; these levels result from exchange of ordinary mesons ($\omega, \rho, \epsilon, \phi$, etc.). An interpretation of the resonances in e^+e^- annihilation in the region 3.9–4.8 GeV is proposed.

Molecular Charmonium: A New Spectroscopy?*

A. De Rújula, Howard Georgi, † and S. L. Glashow Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 23 November 1976)

Recent data compel us to interpret several peaks in the cross section of e^-e^+ annihilation into hadrons as being due to the production of four-quark molecules, i.e., resonances between two charmed mesons. A rich spectroscopy of such states is predicted and may be studied in e^-e^+ annihilation.

November 1976

<u>Charmonium hybrids</u> States with excited gluonic degrees of freedom

Hadro-charmonium

Specific charmonium state "coated" by excited light-hadron matter

Charmonium & Charmoniumlike states

2002-2013 Discovery of 6 standard charmonium states 2002-2015 Discovery of 13(+4?) exotic charmonium states All of them above open charm threshold

M_X close to D⁰D^{*0} threshold M = 3871.68 \pm 0.17 MeV not clear below or above: $\Delta m = -0.11 \pm 0.22$ MeV surprisingly narrow: $\Gamma_{tot} < 1.2$ MeV at 90% CL

$$J^{PC} = 1^{++}$$

finally
established

X(3872) Belle topcited:

1000+

First observed by Belle in $B \rightarrow K J/\psi \pi^+ \pi^-$ Confirmed: BaBar, LHCb, CMS, ATLAS, CDF

<u>Hadronic collisions</u>: produced mostly promptly; only 0.263±0.023±0.016 from B-decays (CMS)

Known	BR relative	Comments
uccays	$J/\psi\rho$ mode	
J/ψρ	1	isospin violation
J /ψω	0.8 ± 0.3	isospin violation
J/ψγ	0.21 ± 0.06	Belle&Babar good
		agreement
ψ(2S)γ	0.50 ± 0.15	Belle&Babar
		disagreement
		LHCb confirms
		BaBar
D^0D^{*0}	~10	dominant mode

X(3872) interpretations

Conventional charmonium χ_{c1} (2P) (J^{PC}=1⁺⁺)

Problems:

- $\Gamma(\chi_{c1} (2P) \rightarrow J/\psi\gamma)/\Gamma(\chi_{c1}(2P) \rightarrow J/\psi\pi\pi) \sim 30,$ measured < 0.2
- $\sim 100 \text{MeV}$ heavier then expected

<u>Tetraquark (cq)(cq):</u>

+ 3 states (cu)(cu), (cd)(cu), (cd)(cd) with a few MeV mass splitting

Problems:

no evidence of neither neutral doublet nor charged partner yet

Others Spires' vote: Hybrid 4-quark Molecule

D⁰D^{*0} molecular state: (the most popular)

- $M_X \sim M_{D0} + M_{D^{*0}}$ is not accidental
- $J^{PC}=1^{++} (D^0 D^{*0} \text{ in S-wave})$
- DD* decay
- Small rate for decay into $J/\psi\gamma$ is expected

Problems:

- too large $X(3872) \rightarrow \psi(2S)\gamma$
- too small binding energy: D⁰ and D^{*0} too far in space to be produced in high energy pp collisions

Possible solution:

Mixture of P-wave charmonium level $\chi_{c1}(2P)$ and S-wave DD^{*0} molecule

X(3872): to be done

Search for X(3872) partners decays	Comments
$\chi_{c1} \gamma$ $\chi_{c2} \gamma$	Forbidden by C-parity conservation C-odd partners: tetraquark, molecule UL : < 1/4 from J/ $\psi \pi^+\pi^-$
Ϳ/ψ η	C-odd partners: tetraquark UL : $< 1/2$ from J/ $\psi \pi^+\pi^-$
$ \eta_c \eta $ $ \eta_c \pi^0 $ $ \eta_c \pi^+ \pi^- $ $ \eta_c \omega $	Search for other X-like molecular states UL : $\sim J/\psi \pi^+\pi$

 \circ Detailed pattern of X(3872) to charmonium transitions (radiative and hadronic) with significantly improved accuracy

• Search for partners of X(3872) molecules with $J^{PC} = 0^{++}, 1^{+-}, 2^{++}...$

○ Measurements of absolute BR of $B \rightarrow KX(3872)$

• Measurements of line shape of X(3872) decaying to DD^{*} at threshold and to $J/\psi\pi^+\pi^$ to clarify nature of X(3872): virtual or bound state *Yu.S.Kalashnikova*, *A.V.Nefediev PRD80*, 074004 (2009)

 \circ Measurements of the total width of X(3872)

Vector states

Vector states in e⁺e⁻ annihilation with ISR

Y(4008)	3891 ± 42	255 ± 42	1	$e^+e^- \to (\pi^+\pi^- J/\psi)$	Belle $[1046, 1094]$ (7.4)	2007	NC!
Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \to (\pi\pi J/\psi)$	BaBar [1104, 1105] (8), CLEO [1106, 1107] (11) Belle [1046, 1094] (15), BES III [1045] (np)	2005	Ok
				$e^+e^- \rightarrow (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok
				$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III [1045] (8), Belle [1046] (5.2)	2013	Ok
				$e^+e^- \rightarrow (\gamma X(3872))$	BES III $[1108]$ (5.3)	2013	NC!
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (8), BaBar [1111] (np)	2007	Ok
X(4630) Y(4660)	$\begin{array}{c} 4634^{+9}_{-11} \\ 4665 \pm 10 \end{array}$	92^{+41}_{-32} 53 ± 14	1 1	$e^+e^- \to (\Lambda_c^+\bar{\Lambda}_c^-) \\ e^+e^- \to (\pi^+\pi^-\psi(2S))$	Belle [1116] (8.2) Belle [1110] (5.8), BaBar [1111] (5)	2007 2007	NC! Ok

10th anniversary of Y family discovery

It seems that up to now we have not found an ISR state that has more than one decay mode

Open question: nature of Yfamily

<u>To be done</u>

- Improve accuracy
- o Confirm Y(4008)
- \circ Confirm X(4630) found by Belle only
- Resolve X(4630) &Y(4660) puzzle
- Search for other final states: χ_{c1} , χ_{c2} , η_c , X(3872) + and/or other light hadrons
 - Up to now only J/ψ , $\psi(2S) + \pi\pi$, η

Charged charmoniumlike states at Belle

Charged Z_c^+ states cannot be conventional charmonium or hybrid

From four states found by Belle in B decays only Z(4430)⁺ is confirmed (by LHCb)

Two states are found by Belle in $e^+e^$ annihilation + five more by BESIII

$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$B^0 \to K^-(\pi^+\psi(2S))$	Belle [1112, 1113] (6.4), BaBar [1114] (2.4) LHCb [1115] (13.9)	2007	Ok
				$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle [1103] (4.0)	2014	NC
$Z(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (1.1)	2008	NC!
$Z(4200)^+$	4196^{+35}_{-30}	370^{+99}_{-110}	1+-	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle [1103] (7.2)	2014	NC!
$Z(4250)^{+}$	4248_{-45}^{+185}	177_{-72}^{+321}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0) , BaBar [1097] (2.0)	2008	NC!

More details: Kirill Chilikin, "Charged charmoniumlike states at Belle", 6.10.2015 ICPPA

$B \rightarrow Z^+_{c}K^-$

Z(4430)⁺: three different analysis, J^P = 1⁺ \circ Fit to M($\psi(2S)\pi^+$) with K^{*}(890)&K^{*}(1430) veto \circ Dalitz analysis

• Full amplitude analysis to obtain spin-parity Mass values are the same, width depends on method

Z(4050)⁺ & Z(4050)⁺ in $\chi_{c1}\pi^+$ final state \circ Daliz analysis

$Z_c(4200)^+$ in J/ $\psi \pi^+$ final state, J^P=1⁺

 \circ 4D-fit: Dalitz + angular variables

◦ New decay mode $Z_c(4430)^+$ →J/ψ π

 \circ order of magnitude suppressed (to $\psi(2S)\pi$) despite larger phase space

BaBar does not confirm Belle, but also does not rule it out!

More details: Kirill Chilikin, "Charged charmoniumlike states at Belle", 6.10.2015 ICPPA

Z_c family in e^+e^- annihilation

DD^{*} threshold

Belle only

Only one charged state from the long BESIII list is confirmed by Belle (due to limited statistic) $Z_{c}(3900)^{+} \rightarrow J/\psi\pi^{+}, Z_{c}(3900)^{0} \rightarrow J/\psi\pi^{0}, Z_{c}(3885)^{+} \rightarrow DD^{*}, Z_{c}(4020)^{+} \rightarrow \pi^{+}h_{c}, Z_{c}(4020)^{0} \rightarrow \pi^{0}h_{c}, J^{+}\mu^{-}h_{c}, Z^{+}\mu^{-}h_{c}, Z^{+}\mu^{-}h_{c}$ $Z_c(4025)^+ \rightarrow D^*D^*$

To be done

Confirm (or not) the BESIII & Belle charmoniumlike states & to look for new structures in $\pi \psi(2S)$ et al using ISR

Overview of Z_c states

Pentaquark? Charmoniumlike?

Large signal found

 $\Lambda_{\rm b} \rightarrow J/\psi K^- p$

Projections

Fit results

Mass (MeV)	Width (MeV)	Fit fraction (%)
4380±8±29	205±18±86	8.4±0.7±4.2
4449.8±1.7±2.5	39±5±19	4.1±0.5±1.1
Λ(1405)		15±1±6
Λ(1520)		19±1±4

Models

Tightly bound quarks
Hadroquarkonium
Rescattering
Molecules

Charmonium double production

 J/ψ production study with/without additional charm

To be done

○ Angular analysis for solid identification $\eta_c(3S)$, $\eta_c(4S)$, χ_{c0} . Search in B decays. ○ Search for new states in e⁺e⁻→J/ψD^(*)D^(*)π and in e⁺e⁻→ χ_{c1} D^(*)D^(*)

• Production: reconstruction of the exclusive final states

 \circ Production studies with other charmonium states (e.g. $\psi(2S), \chi_{c1}$)

Confirmed by BaBar, prefer J^P=0⁺

Y(3915)	3918.4 ± 1.9	20 ± 5	$0/2^{?+}$	$B \to K(\omega J/\psi)$ $e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [1088] (8), BaBar [1038, 1089] (19) Belle [1090] (7.7), BaBar [1091] (7.6)	2004 2009	Ok Ok
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle $[1109]$ (3.2)	2009	NC!

PDG: **Y**(**3940**) = **Y**(**3915**)= χ_{c0} (**2P**) <u>Theory</u> \bigotimes

 $\circ \chi_{c0}(2P)$ production in two body B decays is suppressed

 \circ χ_{c0}(2P) → DD should be dominant, but not seen

 \circ a better candidate for χ_{c0}(2P) seen in e⁺e⁻→ J/ψDD To be done \circ (Not) confirm that $Y(3940) = Y(3915) = \chi_{c0}(2P)$

Seach for tetraquark

Y(4140) & Y(4274) narrow peak at threshold and one more nearby

Belle: low momentum kaon detection efficiency is small. 50X more data should help

Belle & LHCb: NO!

To be (not) confirmed

NC!

2009

??+ $B^+ \to K^+(\phi J/\psi)$ Y(4140) 4145.8 ± 2.6 18 ± 8 ??+ $B^+ \to K^+(\phi J/\psi)$ Y(4274) 4293 ± 20 35 ± 16

CDF [1098] (5.0), Belle [1099] (1.9), LHCb [1100] (1.4), CMS [1101] (>5) D0 [1102] (3.1)

CDF [1098] (3.1), LHCb [1100] (1.0), NC! 2011CMS [1101] (>3), D0 [1102] (np)

In conclusion

Conclusion

About two dozens of charmoniumlike states was found recently and this list continues to increase

In future we expect

- Precise measurements of known charmonium and charmoniumlike states
- Search for new charmonium and charmoniumlike states above open charm threshold
- Many opportunities for analysis on exotic hadron physics
- A lot of surprises

The most perspective processes

- $\circ \ B \to K X_{cc}$
- Double charmonium production
- Processes with ISR
- $\circ~$ Processes with $\gamma\gamma$ fusion

Backup

Belle II Detector

