Ограничение на константы связи Хиггса на е+е-коллайдерах

Кириченко А.О. Группа M20-115

Используемая теоретическая модель(1)

В статье используется модель эффективной теории поля.

В ней лагранжиан СМ дополняется новыми операторами с размерностями D, большими, чем 4.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}\mathcal{O}_{i}}{\Lambda^{2}}$$

 \mathcal{O}_i - инвариантные относительно группы симметрии СМ операторы размерности D c_i - коэффициенты Вильсона

Используемая теоретическая модель(2)

Авторы работают в базисе SILH.

$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{SILH}}$$

 \mathcal{L}_{SM} - лагранжиан Стандартной модели \mathcal{L}_{SILH} - лагранжиан в базисе «The Strongly-Interacting Light Higgs» SILH

Рассматриваемый процесс(1)

$$e^- + e^+ \rightarrow H + Z$$

$$H \to b \overline{b}$$

$$Z \rightarrow l^+ l^-$$

$$\bar{c}_{\gamma}, \bar{c}_{HW}, \bar{c}_{HB}, \bar{c}_{W}, \bar{c}_{B}, \bar{c}_{H}, \bar{c}_{T}, \bar{c}_{eW}, \bar{c}_{eB}, \bar{c}_{l}$$

Следствие из [1]:

$$\bar{c}_T = 0 \\
\bar{c}_B + \bar{c}_W = 0$$

Малость констант:

$$\bar{c}_l$$
, \bar{c}_{eW} and \bar{c}_{eB}

Конечный набор констант:

$$\bar{c}_{\gamma}, \bar{c}_{HW}, \bar{c}_{HB}, \bar{c}_{W}, \bar{c}_{H}$$

Рассматриваемый процесс(2)

$$e^- + e^+ \rightarrow H + Z$$

Основные процессы:

$$H \to b\bar{b}$$

$$Z \rightarrow l^+ l^-$$

Фоновые процессы:

$$e^+e^- \to ZZ$$

 $e^+e^- \to t\bar{t}$

$$e^+e^- \rightarrow Z\gamma \rightarrow \ell^+\ell^- ii$$

 $e^+e^- \rightarrow \gamma\gamma \rightarrow \ell^+\ell^- jj$

$$e^+e^- \rightarrow W^+W^-Z$$

Cuts

$\sqrt{s} = 500 \text{ GeV}$		nal	Background			
Cuts	\bar{c}_H	$ar{c}_{\gamma}$	SM(H+Z)	$t ar{t}$	ZZ	$Z\gamma, \gamma\gamma, WWZ$
Cross-sections (in fb)	4.51	16.76	5.00	24.77	36.16	11.47
(I): 2ℓ , $ \eta^{\ell} < 2.5$, $p_T^{\ell} > 10$	30,000,000,000,000	12.22	3.79	15.18	23.27	7.37
(II): 2jets, $ \eta^{\text{jet}} < 2.5, p_T^{\text{jet}} > 20, \Delta R_{\ell,\text{jet}} \ge 0.5$	2.48	8.81	2.75	11.21	13.95	4.52
(III): $2b - jets$	1.09	3.84	1.22	4.71	1.16	0.35
(IV): $p_T^{\ell^+\ell^-} > 100$	1.06	3.56	1.18	0.51	0.73	0.094
(V): $90 < m_{b\bar{b}} < 160, 75 < m_{\ell^+\ell^-} < 105$	0.921	3.040	1.022	0.078	0.138	0.003

Таблица 1. Ожидаемые сечения в единицах fb после различных комбинаций cuts для сигнальных и фоновых процессов SM.

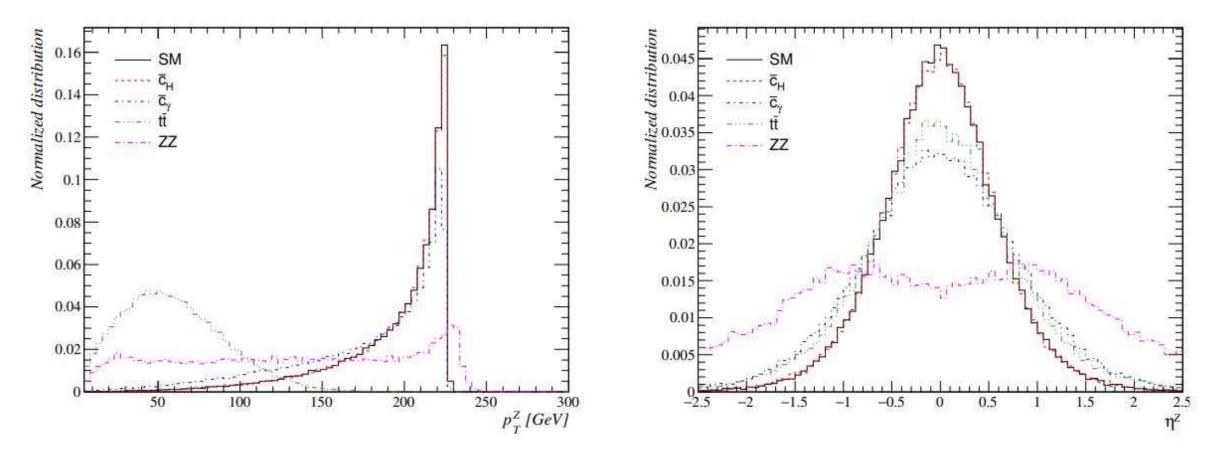


Рис.1 Распределения по поперечному импульсу и псевдобыстроте для Н и фона

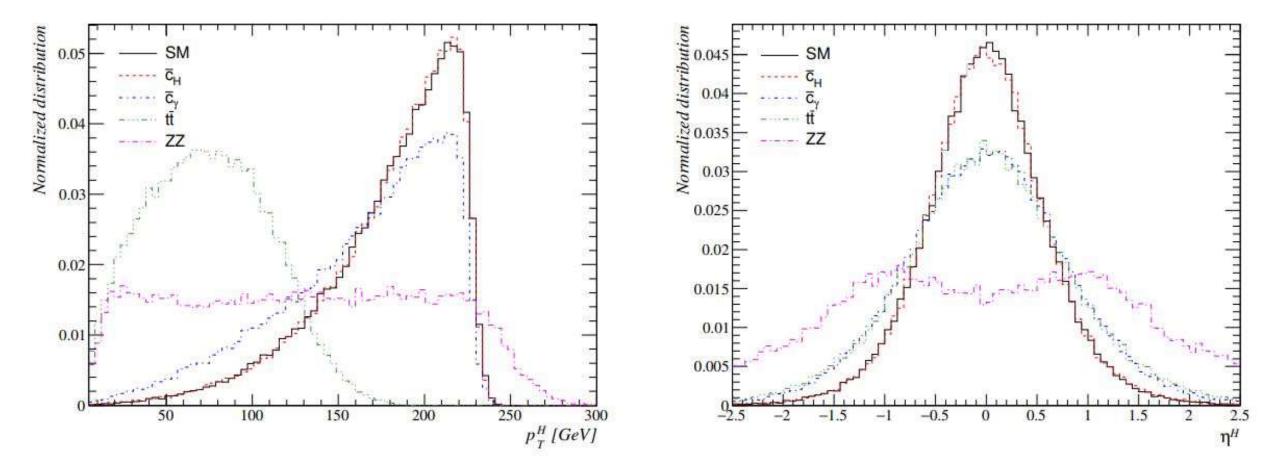


Рис.2 Распределения по поперечному импульсу и псевдобыстроте для Z и фона

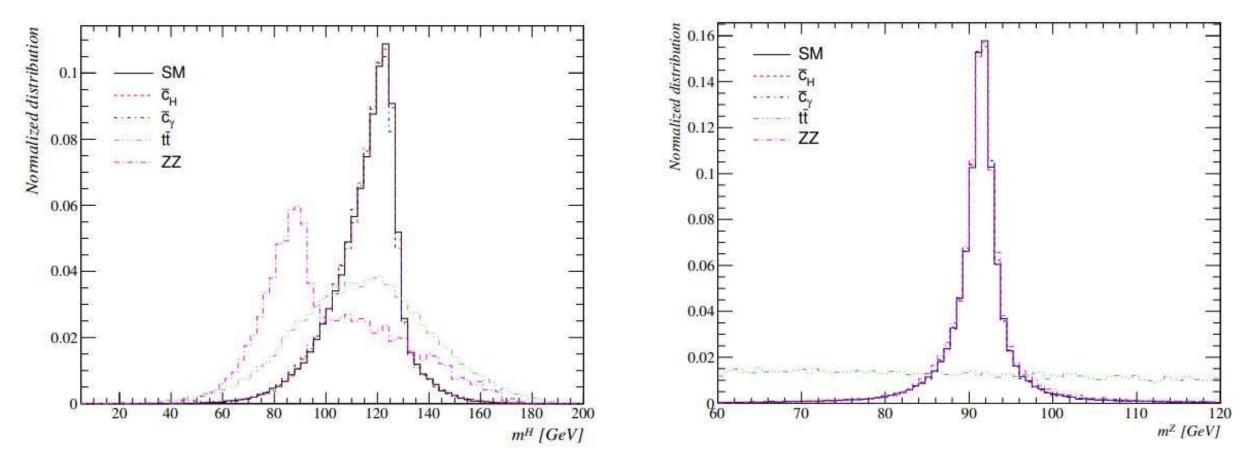


Рис. 3 Распределения по массе H и Z

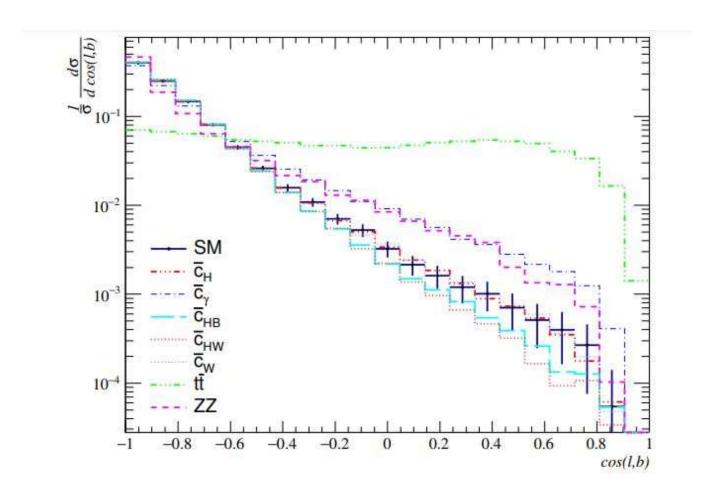
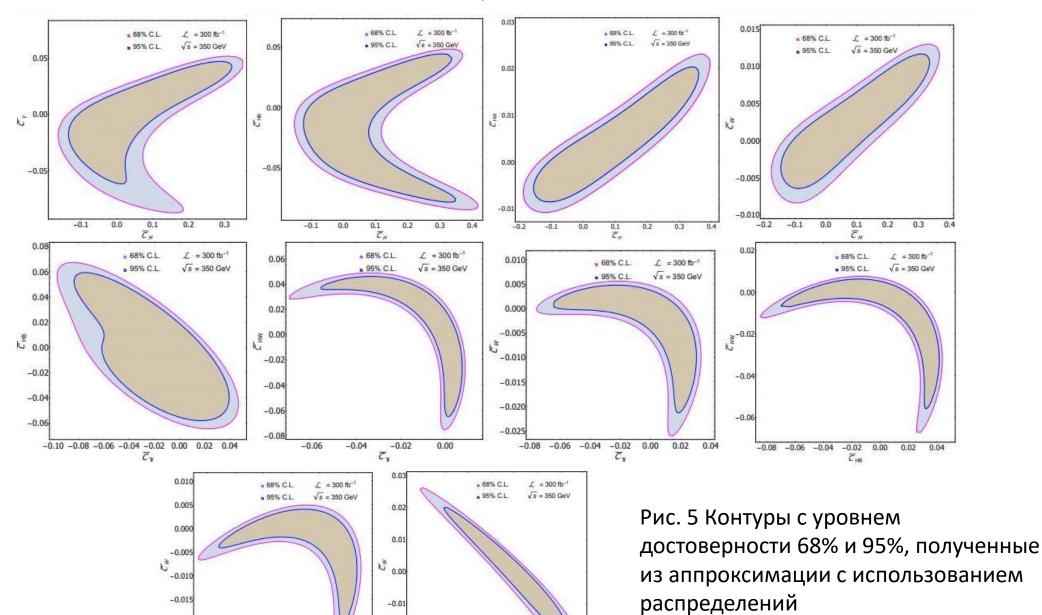
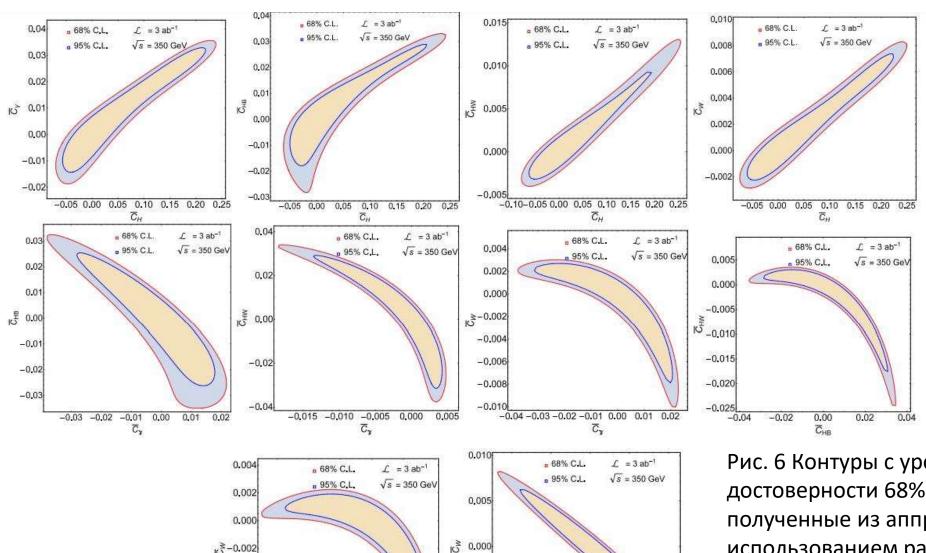



Рис.4 Распределения cos (I, b - jets) для рождения Хиггса в СМ в сочетании с Z-бозоном и H + Z в нынешних различных взаимодействиях при энергии центра масс √s = 500 ГэВ.

Результаты(1)

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

-0.020


-0.08 -0.06 -0.04 -0.02

10

cos (I, b - jets) для √s = 350мГэВ со

светимостью 300 ϕM^{-1} .

Результаты(2)

-0.005

-0.010

-0.010 -0.005

0.000

0.005

15°-0.002

-0.004

-0.006

-0.008

-0.03 -0.02 -0.01 0.00 0.01

Рис. 6 Контуры с уровнем достоверности 68% и 95%, полученные из аппроксимации с использованием распределений \cos (I, b - jets) для \sqrt{s} = 350мГэВ \cos светимостью 3 аб^{-1}

Результаты(3)

	LHC-300	LHC-3000	$e^-e^+ - 350 - 300$	$e^-e^+ - 350 - 30$	$00 \ e^-e^+ - 500 - 300$
$\bar{c}_W[\times 10^3]$	[-8.0, 8.0]	[-4.0, 4.0]	[-4.80, 3.79]	[-1.37, 1.27]	[-3.24, 2.31]
			[-118.43, 129.85]	[-39.40, 40.70]	[-117.58, 145.86]
$\bar{c}_{HW}[\times 10^3]$	[-7.0, 10.0]	[-4.0, 4.0]	[-6.19, 5.52]	[-1.87, 1.80]	[-3.65, 3.03]
			[-61.09, 19.78]	[-19.09, 6.25]	[-43.09, 19.64]
$\bar{c}_{HB}[\times 10^3]$	[-8.0, 11.0]	[-4.0, 4.0]	[-51.35, 19.51]	[-17.20, 6.61]	[-24.70, 9.96]

Таблица 2. Ожидаемые границы 95% для коэффициентов Вильсона от LHC [2] при энергии центра масс 14 ТэВ с $300 \, \phi f^{-1}$ и $3000 \, \phi f^{-1}$, а также пределы, полученные из текущего анализа в электронном столкновения позитронов при энергиях центра масс $350 \, \text{и} \, 500 \, \text{ГэВ}$ с учетом только одного коэффициента.

Коэффициенты Вильсона

Полный лагранжиан SILH

$$\mathcal{L}_{\text{SILH}} = \frac{g_s^2 \, \bar{c}_g}{m_W^2} \Phi^{\dagger} \Phi G_{\mu\nu}^a G_a^{\mu\nu} + \frac{g'^2 \, \bar{c}_{\gamma}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu}$$

$$+ \frac{ig' \, \bar{c}_B}{2m_W^2} \left[\Phi^{\dagger} \overrightarrow{D}^{\mu} \Phi \right] \partial^{\nu} B_{\mu\nu}$$

$$+ \frac{ig \, \bar{c}_W}{2m_W^2} \left[\Phi^{\dagger} \sigma_k \overrightarrow{D}^{\mu} \Phi \right] D^{\nu} W_{\mu\nu}^k$$

$$+ \frac{ig \, \bar{c}_{HW}}{m_W^2} \left[D^{\mu} \Phi^{\dagger} \sigma_k D^{\nu} \Phi \right] W_{\mu\nu}^k$$

$$+ \frac{ig' \, \bar{c}_{HB}}{m_W^2} \left[D^{\mu} \Phi^{\dagger} D^{\nu} \Phi \right] B_{\mu\nu}$$

$$+ \frac{\bar{c}_H}{2v^2} \partial^{\mu} \left[\Phi^{\dagger} \Phi \right] \partial_{\mu} \left[\Phi^{\dagger} \Phi \right] + \frac{\bar{c}_T}{2v^2} \left[\Phi^{\dagger} \overrightarrow{D}^{\mu} \Phi \right] \left[\Phi^{\dagger} \overrightarrow{D}_{\mu} \Phi \right]$$

$$- \frac{\bar{c}_6 \lambda}{v^2} \left[\Phi^{\dagger} \Phi \right]^3$$

$$- \left[\frac{\bar{c}_l}{v^2} y_\ell \, \Phi^{\dagger} \Phi \, \Phi \bar{L}_L e_R + \frac{\bar{c}_u}{v^2} y_u \Phi^{\dagger} \Phi \, \Phi^{\dagger} \cdot \bar{Q}_L u_R \right]$$

$$+ \frac{\bar{c}_d}{v^2} y_d \Phi^{\dagger} \Phi \, \Phi \bar{Q}_L d_R + \text{h.c.} \right],$$

Некоторые константы «сокращаются» ввиду принятых калибровок

$$\bar{c}_T = 0 \\
\bar{c}_B + \bar{c}_W = 0$$

Фоновые процессы

$$75 < m_{ll} < 105\ \Gamma$$
эв $90 < m_{b\bar{b}} < 160\ \Gamma$ эв $p_T^l > 10\ \Gamma$ эв $p_T^{jets} > 20\ \Gamma$ эВ $|\eta_{jets}| \le 2.5$ $|\eta_l| \le 2.5$