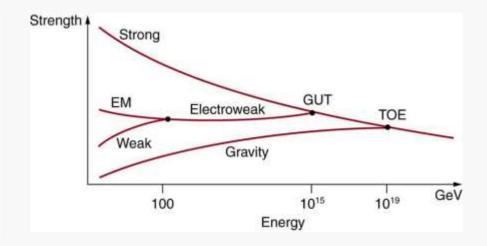
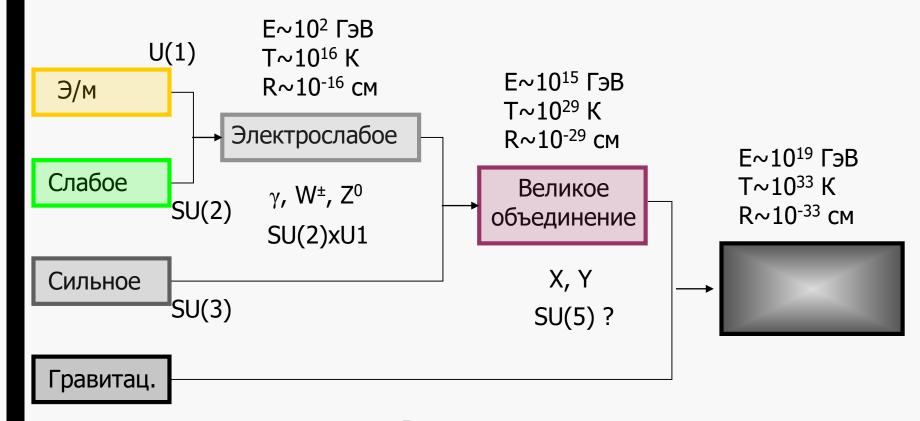
ПОИСК РАСПАДА ПРОТОНА В ДЕТЕКТОРЕ СУПЕР-КАМИОКАНДЕ


Гавва Оксана НИЯУ МИФИ Москва 2021

Фундаментальные взаимодействия

	Гравитац.	Слабое	Э/м	Сильное
Заряд	Масса	Лептонный заряд	Электрич. заряд	Цветовой заряд
Переносчики	Гравитон	W [±] , Z ⁰	Фотон	Глюоны
Радиус, м	∞	10 ⁻¹⁸	∞	10 ⁻¹⁵
Относит. сила	1	10 ²⁵	10 ³⁶	10 ³⁸


Великое объединение взаимодействий

Энергия, ГэВ			
0.01	10	1/137	1/26
0.1	1	1/135	1/27
1	0.40	1/133	1/28
100	0.12	1/128	1/30

- в основе идеи объединения заложена зависимость констант связи от энергии (расстояния, температуры)
- константы взаимодействия экспериментально измеряемая величина (см. таблицу)
- область энергий $\sim \! 10^{15}$ ГэВ, где ожидается объединение, сегодня недоступна для эксперимента
- физические условия для Великого объединения взаимодействий могли существовать в короткий период после Большого взрыва ($\sim 10^{-40}$ с)

Великое объединение взаимодействий

Возникает симметрия между кварками и лептонами.

Простейшая ТВО: минимальная SU(5)-модель

Глэшоу и Джорджи (1974 г)

Барионное и лептонное числа не сохраняются по отдельности, но сохраняется (В – L)

SU(5) – это наименьшая и простейшая из групп, которая включает в себя SU(3) и SU(2)xU(1)

В простейшем представлении группы SU(5) членами семейства являются пять правых компонент частиц: d-кварк во всех цветах, позитрон и антинейтрино

Каждой из этих частиц приписываются четыре независимых заряда: электрический, слабый и два цветовых (R-G) и (G-B)

	Эл. заряд	Слабый заряд	Заряд (R-G)	Заряд (G-B)
d-кварк, красный	-1/3	0	+1/2	0
d-кварк, зеленый	-1/3	0	-1/2	+1/2
d-кварк, синий	-1/3	0	0	-1/2
позитрон	+1	+1/2	0	0
антинейтр ино	0	-1/2	0	0

Для каждого заряда сумма зарядов по частицам равна 0.

Х. Джорджи, УФН **136**, 287 (1982)

Простейшая ТВО: минимальная SU(5)-модель

- Все возможные переходы между этими пятью состояниями материи обеспечиваются 24-мя промежуточными бозонами:
 - Нейтральные γ , Z^0 , G_1 , G_2
 - Переводят частицу саму в себя.
 - Заряженные W^{\pm} и еще шесть глюонов G_3 , ..., G_8 .
 - 12 векторных лептокварков (З X- и З Y-бозона и их античастицы) осуществляют переходы между лептонами и кварками
 - Каждый из этих бозонов обладает слабым, цветовым и электрическим зарядом:
 - ±4/3 у X-бозонов
 - ±1/3 у Y-бозонов

Простейшая ТВО: минимальная SU(5)-модель

Комбинирование по парам пяти правых частиц дает семейство из десяти левых:

- Это левые компоненты позитрона (т.е. электрон) и и, d и ū-кварков (в трех цветах каждый)

Аналогично можно «сконструировать» еще два семейства частиц (5 левых + 10 правых), плюс распространить на высшие поколения кварков и лептонов:

- c, s, μ , v_{μ}

- t, b, τ, v_{τ}

Таким образом, принципиального отличия между лептонами и кварками больше нет: они все стали членами одного семейства.

	Эл. заряд	Слабый заряд	Заряд (R-G)	Заряд (G-B)
d-кварк правый	-1/3	0	+1/2	0
позитрон	+1	+1/2	0	0
u-кварк левый	+2/3	+1/2	+1/2	0

	Эл. заряд	Слабый заряд	Заряд (R-G)	Заряд (G-B)
d-кварк правый	-1/3	0	-1/2	+1/2
антинейтр ино	0	-1/2	0	0
d-кварк левый	-1/3	-1/2	-1/2	+1/2

Как получить распад протона?

- Поскольку стали возможны прямые переходы кварк-лептон и кварк-антикварк, то возможны и процессы с нарушением законов сохранения барионного и лептонного чисел.
- Кварковый состав протона: uud
- Допустим, что два из трех кварков оказались на расстоянии ~10⁻²⁹ см друг от друга. Тогда между ними может произойти обмен X-бозоном:
 - Например, правый красный d-кварк (q=-1/3) испускает X-бозон с эл. зарядом -4/3 и красным цветовым зарядом
 - Таким образом, этот d-кварк лишается цветового заряда и приобретает эл. заряд -1/3 (-4/3) = +1, т.е.
 становится позитроном
 - В свою очередь, X-бозон может поглотиться левополяризованным зеленым и-кварком (q=+2/3), который тогда перейдет в левый антикварк \bar{u} антисинего цвета (q = 2/3 + (-4/3) = -2/3)
 - Этот \bar{u} в комбинации с оставшимся и-кварком дают π^0 -мезон.
- Таким образом, мы получили процесс:

$$p \rightarrow e^+ + \pi^0$$

В минимальной SU(5)-модели время жизни протона при распаде по этому каналу $\sim 10^{31}$ лет

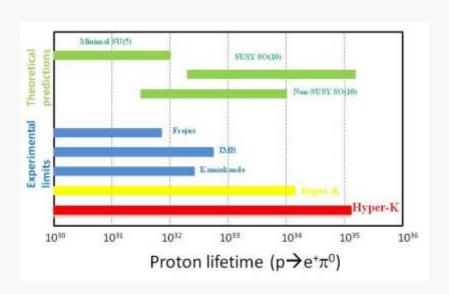
Как искать?

Скорость распадов:

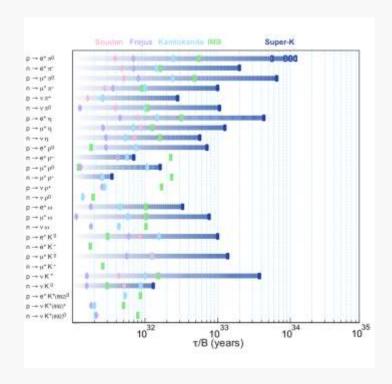
 n_{obs} – число зарегистрированных событий распада

$$\Gamma = \frac{n_{obs}}{N_0} \frac{1}{\Delta t \epsilon B} = \frac{1}{\tau}$$
 N_0 – число протонов в момент в Δt – время экспозиции ϵ – эффективность регистрации

 N_0 – число протонов в момент времени t=0

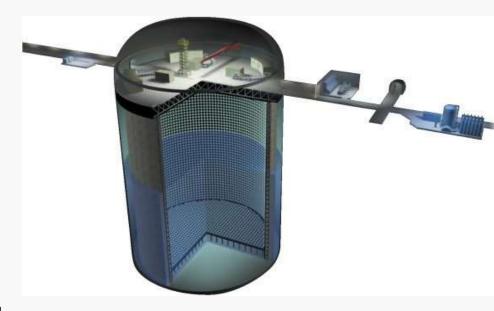

В – вероятность распада в искомый канал (branching ratio)

Таким образом, время жизни: $\frac{\tau}{B} = \frac{N_0 \Delta t \epsilon}{n_{obs}}$

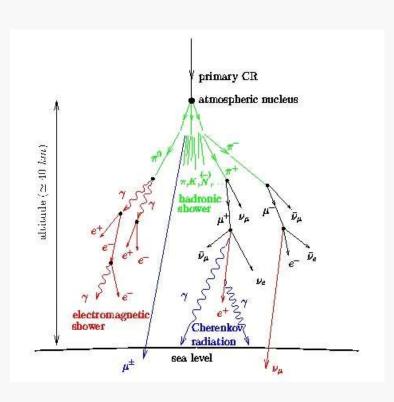

$$\frac{\tau}{B} = \frac{N_0 \Delta t \epsilon}{n_{obs}}$$

- В Супер-Камиоканде (22.5 кт FV) 7.5×10^{33} протонов и 6×10^{33} нейтронов
- Особенности экспериментов по поиску распада протона зависят от нескольких факторов:
 - Оценка времени жизни по данному каналу распада
 - Канал распада и распределение по энергиям вторичных (искомых) частиц
 - Специфический к данному каналу распада фон

Оценки и измерения времени жизни протона



Каналы распада и современные ограничения

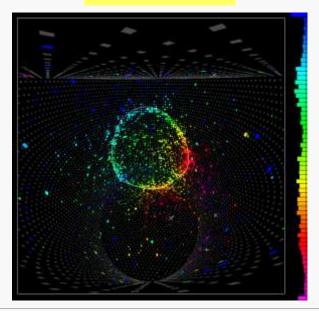


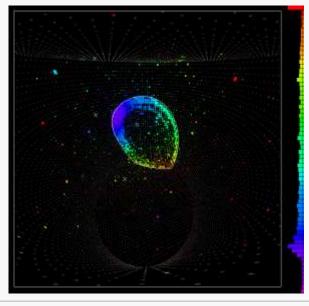
Super-KamiokaNDE

- Резервуар из нержавеющей стали в форме цилиндра;
- Высота 41,4 м, диаметр 39,3 м на глубине 1км
- 50 кт очищенной воды
- Внутренний детектор мишень для нейтрино:
 - 32 kt H₂0
 - 11146 20-дюймовых ФЭУ
- Внешний детектор защита от уквантов и нейтронов извне:
 - 18 кт H₂0
 - 1885 8-дюймовых ФЭУ
- Внутренний и внешний детекторы разделены между собой двумя слоями пленки из полиэтилентерефталата
- Порог 5 МэВ
- Оптическое покрытие 40%

Фон от атмосферных нейтрино в поиске распада р



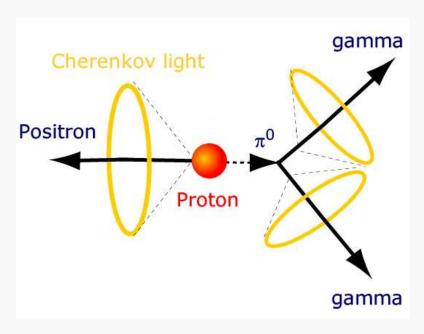

- Отношение v_{μ}/v_{e} должно быть ~2
 - $(\mu/e)_{3KC\Pi}/(\mu/e)_{Teop.} = 0.64$
- Для получения этого результата в Супер-К потребовалось разработать алгоритмы µ/е-дискриминации по форме черенковских колец
 - Они играют важную роль и в задачах поиска распада протона.
- Атмосферные нейтрино являются фоном по отношению к распаду протона:
 - $\;$ для распадов рightarrowе $^{+}\pi^{0}$:
 - $\;$ для распадов р $ightarrow ilde{v} K^+$:


 - ...и др. процессы

e-подобные и µ-подобные черенковские кольца

electron-like event

е: э/м ливень, многократное кулоновское рассеяние


µ: распространяются почти прямо, теряя энергию за счет ионизационных потерь

Particle ID

Разница в схеме событий

$$\chi^{2} = \sum_{\theta < 70 \text{deg}} \left(\frac{p.e.(obs'd) - p.e._{e \text{ or } \mu}(expected)}{\sigma_{p.e.}} \right)^{2}$$

Распад по каналу р $\rightarrow e^+\pi^0$

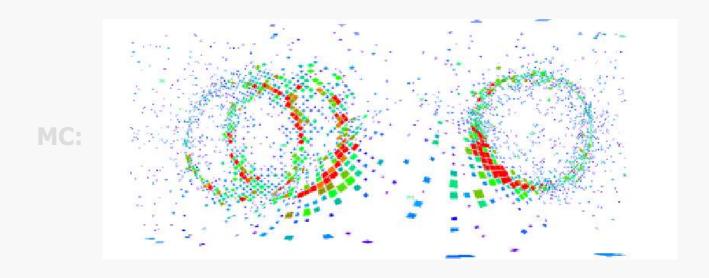
В системе покоя протона:

$$E_{\pi^0} = \frac{m_p^2 + m_{\pi^0}^2 - m_e^2}{2m_p}$$

$$E^2 = p^2 + m^2$$

$$m_p = 938 M_{\rm P}B$$

$$m_{a} = 0.5M9B$$


$$m_{\pi^0} = 135 M_{\rm B}B$$

$$p_{\pi} = p_{e} = 469 \text{ M}{\cdot}\text{B/c}$$

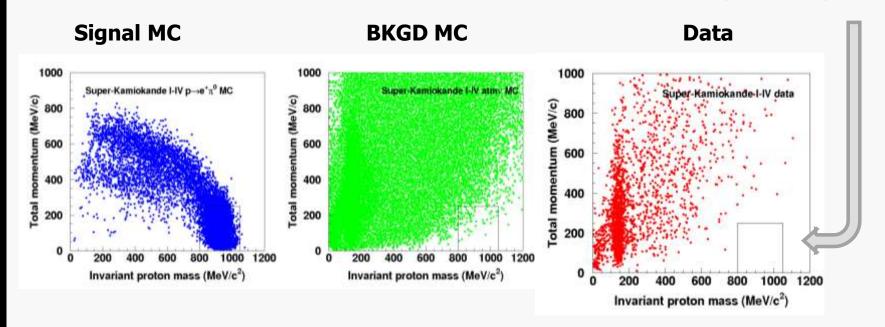
Распад по каналу р $ightharpoonsep e^+\pi^0$

$$p \to e^+ + \pi^0$$
$$\pi^0 \to 2\gamma$$

Идеальный случай: позитрон ($p = 469 \text{ M} \rightarrow \text{B/c}$) инициирует э/м каскад, результатом которого будет одно e-like черенковское «кольцо». Гамма-кванты от распада нейтрального пиона будут приводить к рождению электрон-позитронных пар, которые, в свою очередь, приведут к развитию э/м каскада и двум зарегистрированным e-like кольцам черенковского излучения.

Анализ экспериментальных данных

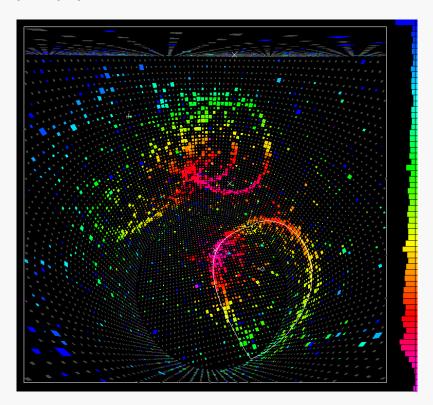
- Трудности: если распад протона произойдет в ядре ¹⁶О, тогда вероятность нейтральному пиону покинуть ядро без взаимодействия всего лишь 0.43
- При анализе данных действительно наблюдались эффекты, которые сильно искажали ожидаемую сигнатуру распада протона и приводили к нарушению баланса восстановленных импульсов:
 - Пион может рассеяться или поглотиться в ядре до того, как успеет вылететь из него
 - Распад пиона может быть асимметричным по энергиям γ-квантов
 - Это может привести к тому, что одно из двух черенковских колец, отвечающих распаду π^0 -мезона, будет слабым или его не будет вообще
 - Протон в ядре обладает определенным импульсом


Условия отбора событий

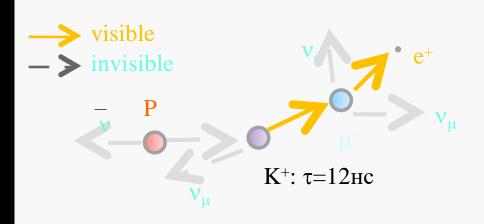
- 6000 < Q_{полный} < 9500 ф/электронов</p>
 - Позволяет сразу исключить большое число фоновых событий
- 2 или 3 <u>e-like</u> черенковских кольца
 - Три идеальный, неискаженный случай распада протона,
 два т.к. энергия одного из фотонов может оказаться ниже черенковского порога
- 85 < M_{π} < 185 МэВ/с² (в двух кольцах при трех зарегистрированных)
- $800 < M_p < 1050 \text{ M}_{3}B/c^2$
- Полный импульс $P_{tot} = \left| \sum_{i} \vec{P}_{i} \right| < 250 \text{ MэВ/c}$ (импульс Ферми для ядра ¹⁶O)

Результаты (полный импульс vs. полная инвариантная масса)

- Статистика 205.7 кт-год
- Ни одного события не найдено
- $T > 1.21 \cdot 10^{34} \text{ Aet } (90\% \text{ C.L.})$


Здесь мог быть распад протона

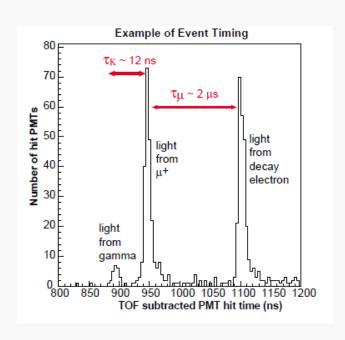
Пример события-кандидата

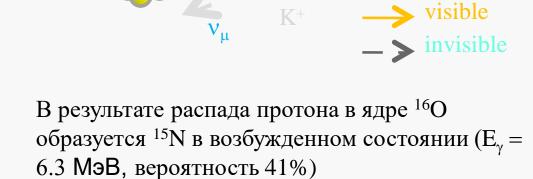

Это событие было одним из близких кандидатов на распад протона на e^+ и π^0 . π^0 распадется на два γ -кванта, которые образуют перекрывающиеся нечеткие кольца. e^+ и π^0 летели бы в противоположных направлениях.

Это реальное событие (не Монте-Карло), записанное 24.09.1997, 12:02:48. Его обнаружил Бретт Вирен, но он не прошел проверку.

- Анализ основан на поиске продуктов распада К⁺
 - Нейтрино уносит часть энергии протона, так что уже нельзя восстановить его массу по продуктам распада
- Сценарий А: K⁺→µ⁺v_µ (вер-ть 64%)
 - А1: свободный протон
 - *A2:* связанный в ¹⁶О протон
- Сценарий Б: $K^+ \rightarrow \pi^+ \pi^0$ (вер-ть 21%)

Model	Prediction, years
Minimal SUSY SU(5)	≤10 ³⁰
SUGRA SU(5)	10 ³² - 10 ³⁴
SUSY SO(10)	10 ³² - 10 ³⁴




 K^+ нерелятивистский (импульс ниже черенковского порога). K^+ останавливается и распадается на μ^+ ($P=236~M\ni B/c$) и ν_μ (вероятность распада по этому каналу 64%)

Что ищем в данных:

• 1 µ-like кольцо + распадный электрон от распада мюона

А2: $K^+ \rightarrow \mu^+ \nu_{\mu}$, связанный протон

=> TFC (three-fold coincidence)

6.3MeV

 $^{16}\text{O} - >^{15}\text{N}$

Что ищем в данных:

- e-like кольцо от гамма-кванта
- 1 µ-like кольцо + электрон от распада мюона

Условия отбора событий

■ A1:

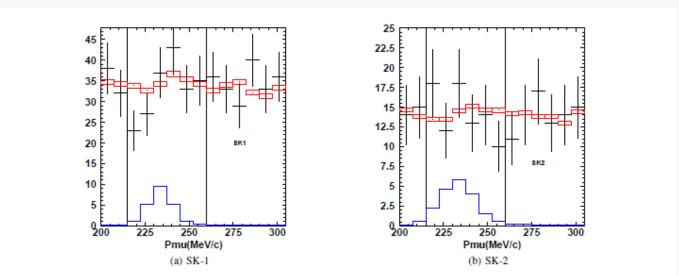
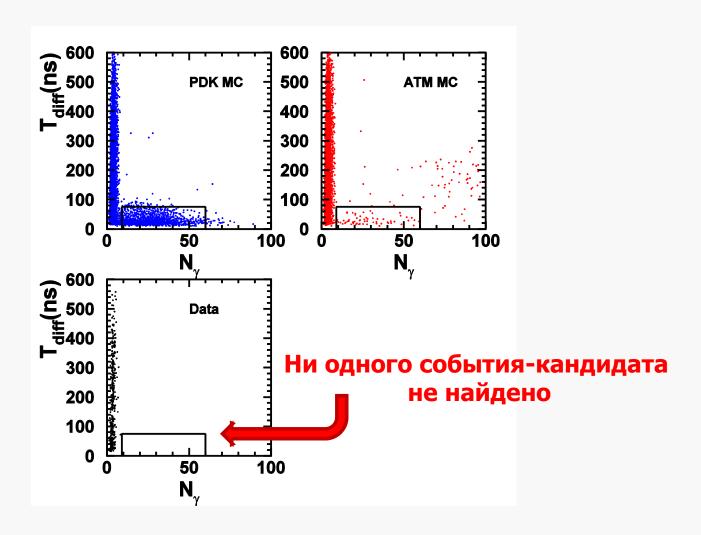
- 1 <u>µ-like</u> черенковское кольцо
- 1 <u>e-like</u> кольцо (электрон от распада мюона)
- $-215 < P_{\mu} < 260$ МэВ/с

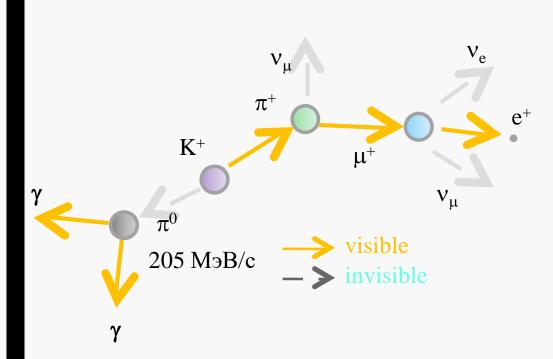
■ +A2:

- $N_{\phi \ni y}$ для первого события:
 - <= 60 для SK-I, III, IV (<=30 для SK-II)
- $-12 < t_{\text{фэу}} < 120$ нс до мюонного события

Результаты (А1)

- 33 кт-год (535 дней сбора данных)
- Эффективность: 4.4% (определена из Монте-Карло)
- Нет превышения сигнала над уровнем фона

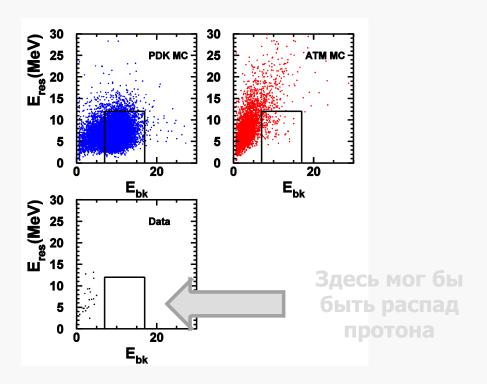




Fig. 1: Momentum distribution of FC1R μ -like sample of SK-1 (left) and SK-2(right). Cross dots are data, boxes are atmospheric neutrino MC, and histograms are proton decay MC.

Результаты (А2)

Ограничение на время жизни: $> 3.9 \times 10^{33}$ лет (90% C.L.)

B: $K^+ \rightarrow \pi^+ \pi^0$


- Вероятность этого канала распада: 21%.
- π^0 и π^+ вылетают в противоположных направлениях с импульсами $205~{
 m M}{
 m s}{
 m B/c}.$
- Импульс π⁺ на уровне черенковского порога

Что ищем в данных: моноэнергетический π^0 плюс какоелибо количество света, зарегистрированное в противоположном от него направлении

Условия отбора событий

- 2 <u>e-like</u> черенковских кольца (π 0)
- 1 <u>e-like</u> кольцо от распада мюона (e⁺)
- $85 < M_{\pi 0} < 185 \text{ M}_{3} = 185 \text{ M}_$
- $175 < P_{\pi 0} < 250 \text{ M} \cdot \text{B/c}$
- $40 < Q_{\pi +} < 100 \phi/$ электронов

Результаты

- Ни одного события не найдено
- $T > 4.4 \cdot 10^{32} \text{ AeT } (90\% \text{ C.L.})$

Гипер-Камиоканде

- Детектор будет иметь резервуар с миллиардом литров сверхчистой воды в 20 раз больше, чем резервуар для Супер-Камиоканде. Это увеличение мощности будет сопровождаться пропорциональным ростом количества датчиков. Бак будет представлять собой двойной цилиндр длиной 2 × 250 метров, поперечником примерно 40 × 40 метров.
- В качестве одной из научных целей намечена надежда на первое наблюдение распада протона.

СПАСИБО ЗА ВНИМАНИЕ!