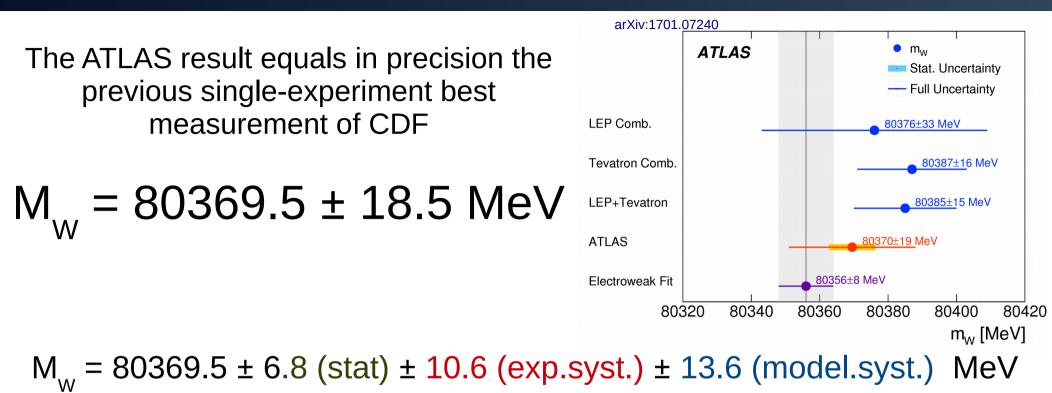


Physics modelling for the measurement of the W-boson mass with ATLAS

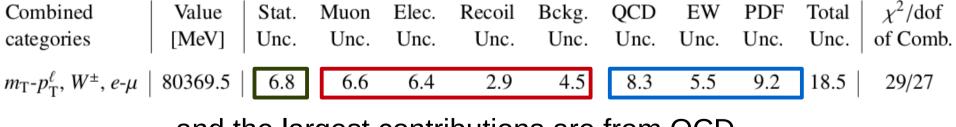
J. TACIDXLI-9:

Stefano Camarda

W-boson mass workshop Mainz – 9 Feb 2017

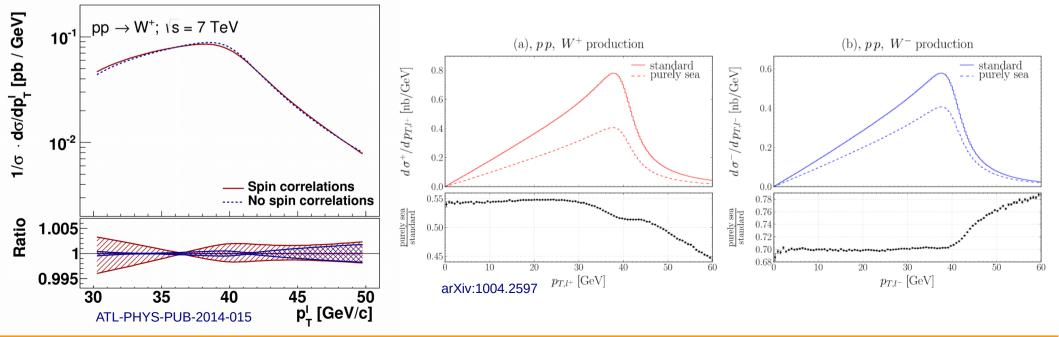

Physics modelling for the W mass measurement

Introduction

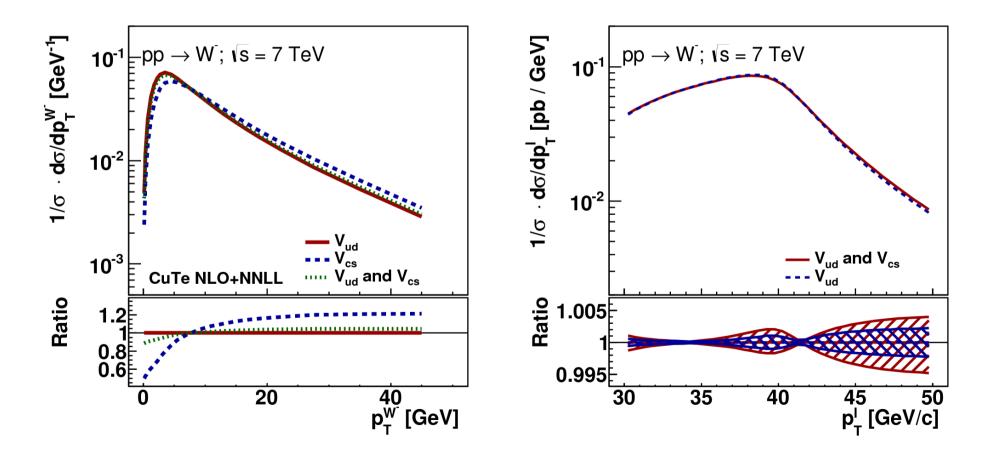

- Physics modelling overview
- Electroweak corrections
- QCD corrections
- Summary and prospects

The talk includes not only a discussion of the ATLAS physics modelling, but also open questions on theory to feed into the discussion

Physics modelling for the W mass measurement


The dominant uncertainty is due to the physics modelling...

...and the largest contributions are from QCD


LHC vs Tevatron - 1st quark generation

- The m_w measurement in proton-proton collisions is affected by significant complications related to QCD, with respect to proton-antiproton collisions
- W-boson production at the Tevatron is charge symmetric and dominated by interactions with at least one valence quark, whereas the sea-quark PDFs play a larger role at the LHC. The W polarisation at the LHC is more influenced by PDF uncertainties, implying larger uncertainties on the lepton p_T distribution
- The valence-sea difference, as well as the amount of sea quarks with u and d flavour, must be known with better precision than needed at the Tevatron

LHC vs Tevatron - 2nd quark generation

At sqrt(s) = 7 TeV, approximately 25% of the W-boson production is induced by at least one second-generation quark, s or c, in the initial state. The amount of heavy-quark-initiated production has implications for the W-boson transverse-momentum distribution and for the W polarisation

LHC vs Tevatron

Despite these difficulties, and although more sources of uncertainty are included, we have obtained similar uncertainties as the Tevatron.

 $\rightarrow\,$ I will try to explain how we built the physics modelling, and how we verified its solidity

- A significant reduction of the uncertainties is obtained by using ancillary DY measurements, and by dividing the measurement in various different categories
- With respect to the Tevatron analysis we have introduced innovation in the physics modelling, especially in the treatement of heavy flavour and angular coefficients corrections and uncertainties
- Another important difference is that we have used a "composite" model for the QCD corrections, instead of relying on a single theory prediction (Resbos at the Tevatron). This was a necessity driven by the requirement that data and MC agree for both Z and W

Comparison of uncertainties with CDF

Similar PDF uncertainties

p_{T} W uncertainties are larger for p_{T} lepton than m_{T} at CDF, but similar in ATLAS

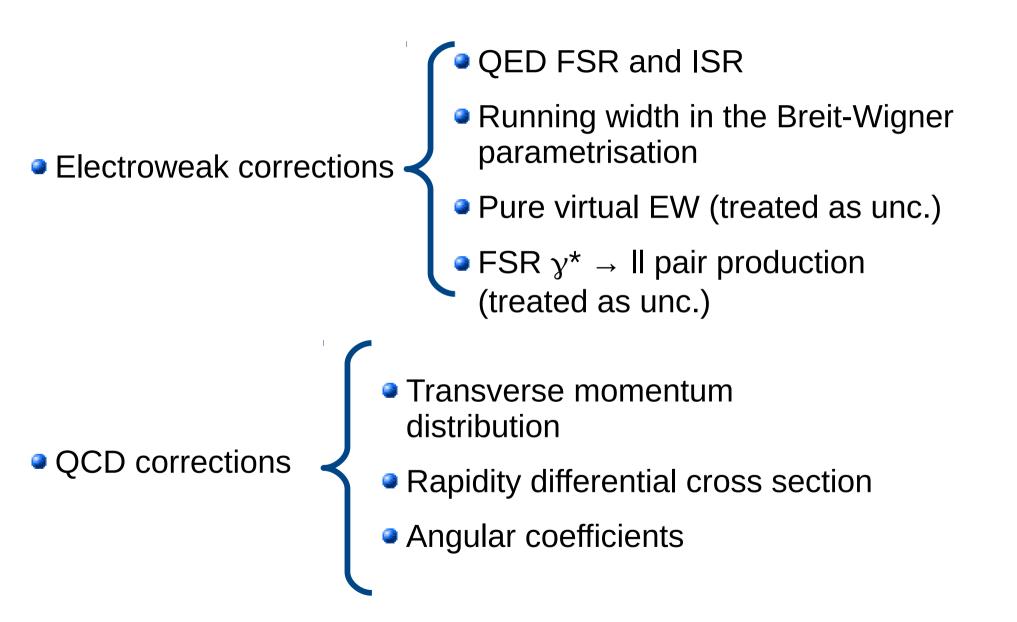
m_T fit uncertainties				p_T^ℓ fit uncertainties					
Source	$W ightarrow \mu u$	$W \rightarrow e v$	Common	Source	$W ightarrow \mu u$	$W \rightarrow e v$	Common		
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5		
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0		
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0		
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0		
Recoil scale	5	5	5	Recoil scale	6	6	6		
Recoil resolution	7	7	7	Recoil resolution	5	5	5		
Backgrounds	3	4	0	Backgrounds	5	3	0		
PDFs	10	10	10	PDFs	9	9	9		
W boson p_T	3	3	3	W boson p_T	9	9	9		
Photon radiation	4	4	4	Photon radiation	4	4	4		
Statistical	16	19	0	Statistical	18	21	0		
Total	23	26	15	Total	25	28	16		

Includes also Ai uncertainties

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.		Unc.	Unc.		Unc.	of Comb.
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}^{-}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T}^{-},W^{\pm},\mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7

Comparison of uncertainties with D0

					-
Source	Section	m_T	p_T^e	E_T	-
Experimental					-
Electron Energy Scale	VIIC4	16	17	16	
Electron Energy Resolution	VIIC5	2	2	3	
Electron Shower Model	VC	4	6	7	
Electron Energy Loss	VD	4	4	4	
Recoil Model	VIID 3	5	6	14	
Electron Efficiencies	VIIB10	1	3	5	
Backgrounds	VIII	2	2	2	_
\sum (Experimental)		18	20	24	Similar PDF
W Production and Decay Model					
PDF	VIC	11	11	14	uncertainties
QED	VIB	7	7	9	
Boson p_T	VIA	2	5	2	-Smaller p ₊ W
\sum (Model)		13	14	17	Ι
Systematic Uncertainty (Experimental and Model)		22	24	29	uncertainties at D0
W Boson Statistics	IX	13	14	15	
Total Uncertainty		26	28	33	-
					_


Includes also Ai uncertainties

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.				Unc.		Unc.	of Comb.
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}^{-}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T}^{-}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7

Physics modelling strategy

- Start from a Powheg+Pythia 8 fully simulated MC sample
- Apply the dominant QED FSR corrections, treat the rest of EW corrections as uncertainties
- For QCD corrections, factorize the fully differential leptonic Drell-Yan cross section in various terms, and use the most appropriate model for each of them
- Use ancillary measurements of Drell-Yan processes to:
 - Fit the parameters of the model
 - Validate the model
 - Assess the uncertainties
- Use Z mass fits and W control plots to further validate the modelling and cross check the uncertainties
- Use the compatibility of W mass categories to further validate the modelling

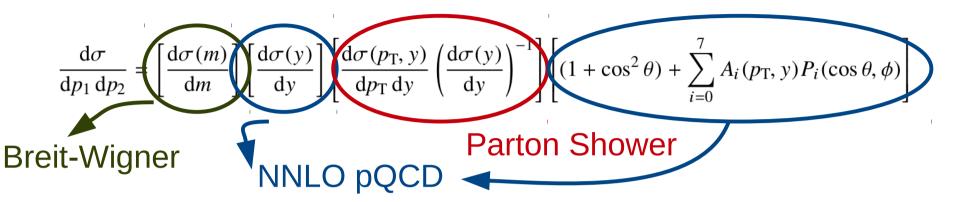
Overview of physics modelling corrections

Physics modelling – electroweak corrections

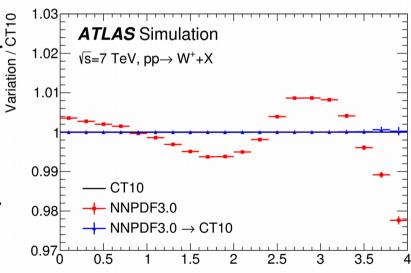
- QED FSR: dominant correction, included in the MC with PHOTOS, uncertainty from comparison with YFS. QED ISR also included
- Running widths (and running of α for Z) included in the BW parametrisation
- NLO electroweak: pure weak corrections and ISR-FSR interference, estimated with WINHAC. QCD ISR included to predict a realistic p_T W distribution (at Tevatron it was evaluated at p_T W = 0). Estimated and added as uncertainty
- SR lepton pair production $\gamma^* \rightarrow II$: formally higher order (NNLO), but significant correction. Estimated and added as uncertainty

Decay channel	И	$V \rightarrow ev$	$W \rightarrow \mu \nu$		
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	
δm_W [MeV]					
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1	
Pure weak and IFI corrections	3.3	2.5	3.5	2.5	
FSR (pair production)	3.6	0.8	4.4	0.8	
Total	4.9	2.6	5.6	2.6	

QCD corrections – Drell-Yan decomposition


- At QED born level, and upon integration of additional QCD radiation, the fully differential DY cross sections is a function of 6 lepton variables: px, py, pz, qx, qy, qz
- The DY cross section can be reorganised by factorising the dynamic of the boson production, and the kinematic of the boson decay

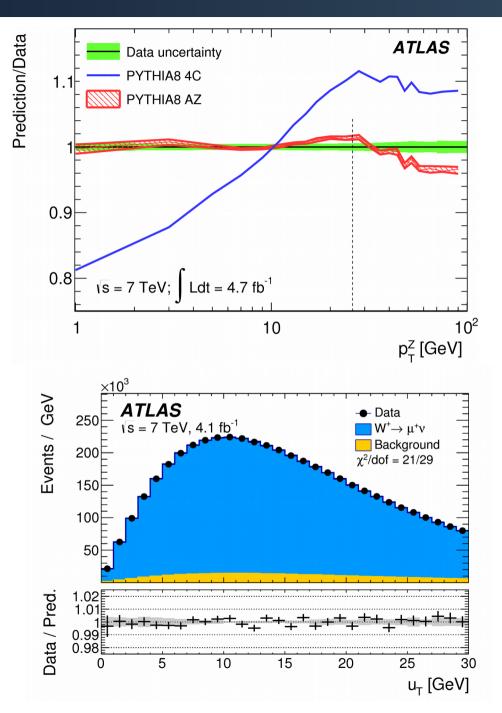
$$\frac{d\sigma}{dpdq} = \frac{d^3\sigma}{dp_T dy dm} \sum_i A_i(y, p_T, m) P_i(\cos\theta, \phi)$$


- P_i (cos θ , ϕ) are spherical harmonics, which provide an orthonormal basis for the decomposition. In the assumption of spin 1 of the boson and spin $\frac{1}{2}$ of the fermions, the 9 harmonics of order 0, 1, and 2 are sufficient for a complete decomposition
- The decomposition is exact at all orders in QCD and LO EW

QCD corrections overview

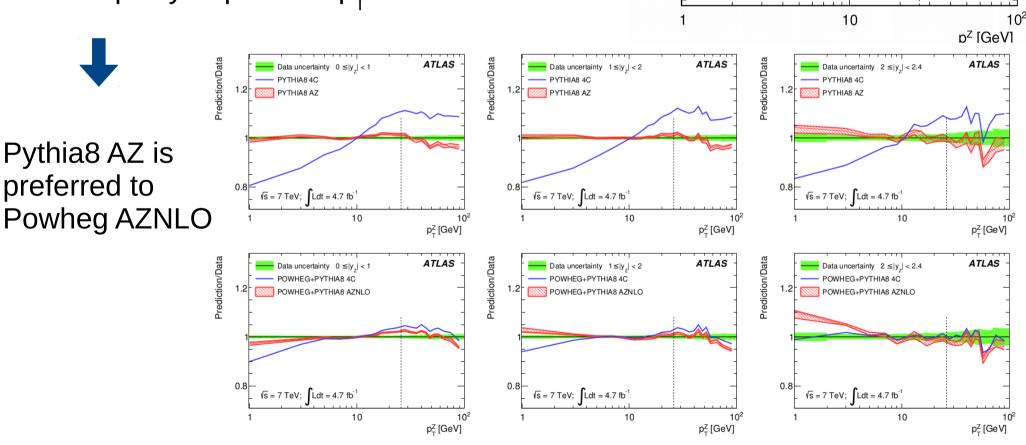
Inspired by this decomposition, we used an approximation of it

- Each of the four terms is modelled with the model which is most appropriate and in best agreement with the data
 1.03
 - The do/dm is modelled with a Breit-Wigner parametrisation
 - The do/dy and the Ai coefficients are modelled with fixed order pQCD at NNLO
 - The do/dpt is modelled with parton shower or analytic resummation
- The validity of the approximate decomposition was checked by reweighting model A to model B, and comparing to the orginal model B. The test showed no bias on m_w within 2 MeV of stat uncertainty


|y|

Physics modelling p_{T} W – Pythia 8 AZ tune

• Pythia8 AZ tune is a fit to the $p_{T} Z$ measurement at 7 TeV


	Pythia8
Tune Name	AZ
Primordial $k_{\rm T}$ [GeV]	1.71 ± 0.03
ISR $\alpha_{\rm S}^{\rm ISR}(m_Z)$	$0.1237 \pm 0.0002 \\ 0.59 \pm 0.08$
ISR cut-off [GeV]	
$\chi^2_{\rm min}/{ m dof}$	45.4/32

- The Pythia8 AZ tune describe the p_T Z data within 2% inclusively and in rapidity bins
- Pythia8 is used to predict the p_T W distribution and to evaluate uncertainties on p_T W

Physics modelling $p_{T} W - Pythia vs Powheg$

- We considered also Powheg+Pythia8 and performed a fit to the same p_T Z data, named AZNLO tune
- AZNLO shows similar agreement with data in the inclusive p_T Z distribution, but worse modelling of the rapidity dependent p_T Z distribution

Prediction/Data

1.1

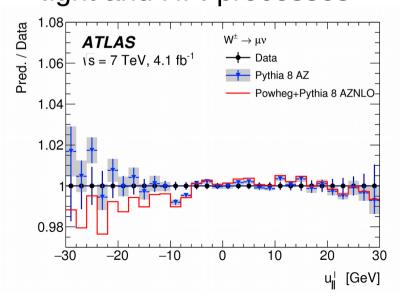
0.9

0.8

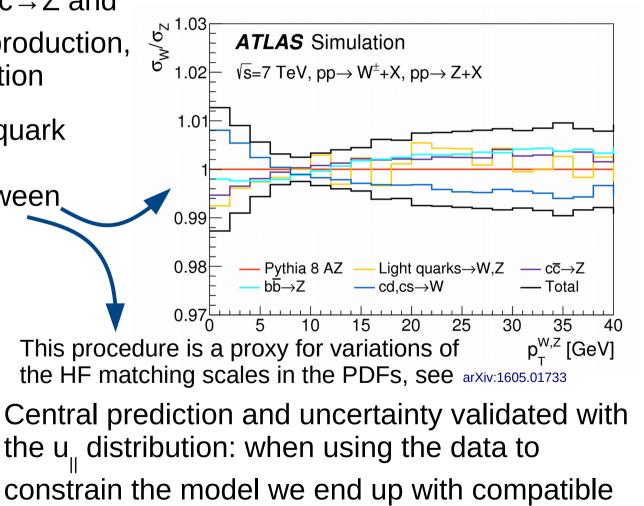
Data uncertainty

vs = 7 TeV; Ldt = 4.7 fb⁻¹

POWHEG+PYTHIA8 4C

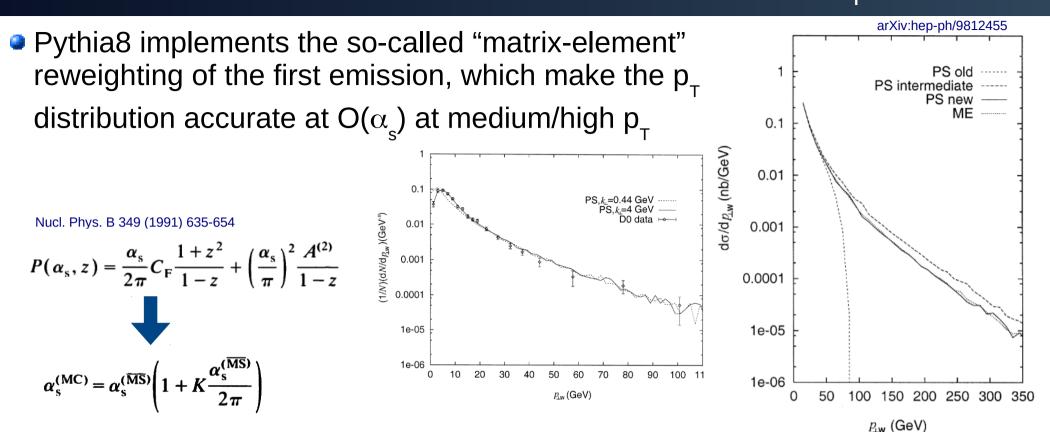

POWHEG+PYTHIA8 AZNLO

Stefano Camarda


ATLAS

Uncertainties in the p_{τ} W modelling

- Heavy-flavour-initiated (HFI) production is a significant source of uncertainty, and introduce decorrelation between Z and W production. HFI production determines a harder boson p_{T} spectrum, $cc \rightarrow Z$ and $bb \rightarrow Z$ are 6% and 3% of Z production, \bigcup_{c}^{N} $cs \rightarrow W$ is ~20% of W production
- HFI addressed with charm-quark mass variations, and by decorrelating the PS μ_F between light and HFI processes

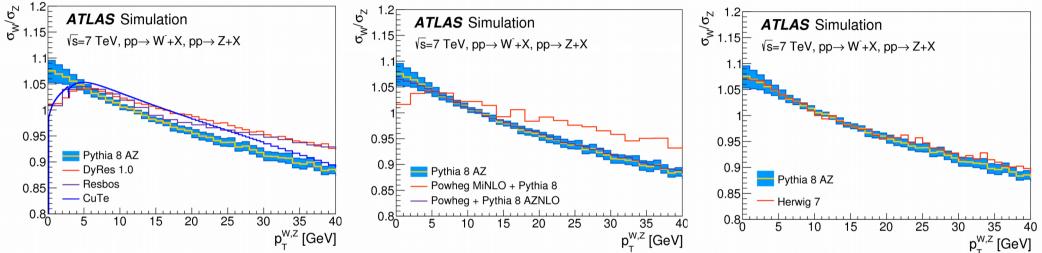


p_τ W uncertainties are evaluated
 as the sum of tune unc. and
 theory unc. on the W/Z p_τ ratio

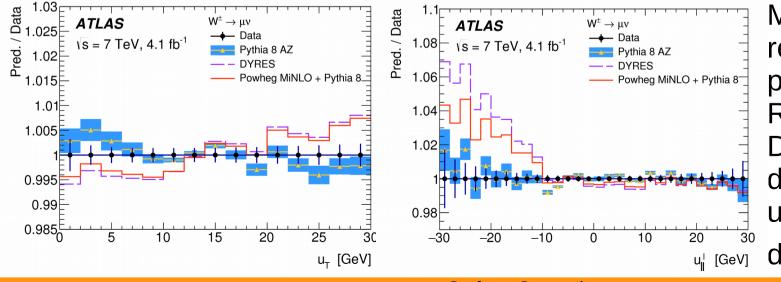
central value and similar uncertainties

Which is the formal accuracy of Pythia 8 p_{T} W?

Resummation arguments show that a set of universal QCD corrections can be absorbed in coherent parton showers by applying the Catani-Marchesini-Webber (CMW) rescaling of the MS value of Λ_{OCD}


 $\alpha_s = 0.118 \to \alpha_s^{CMW} = 0.126$

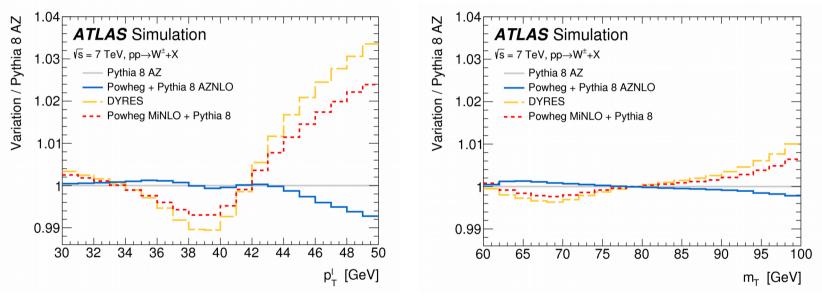
Close to the value α_s = 0.124 of the AZ tune


Is it correct to expect the W p_{τ} normalised distribution of Pythia 8 to be approximately NLO+NLL accurate, i.e. the same formal accuracy of Powheg?

Alternative higher order models for p_{τ} W

Since the $p_{_{\rm T}}$ Z distribution is very well measured, for us it is relevant to discuss theoretical uncertainties on the W/Z $p_{_{\rm T}}$ distribution

Only Herwig, Pythia, and Powheg predict a monotonic falling W/Z pt ratio

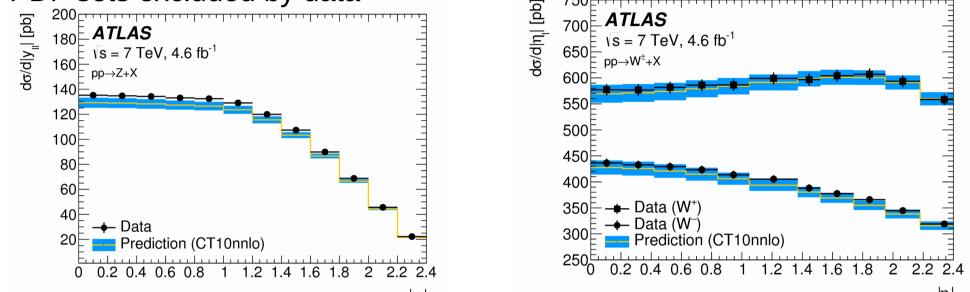


MINLO and NNLL resummed predictions as Resbos, Cute, and DyRes are strongly disfavoured by the u_{ll} distribution in data

Stefano Camarda

Alternative higher order models for p_{τ} W

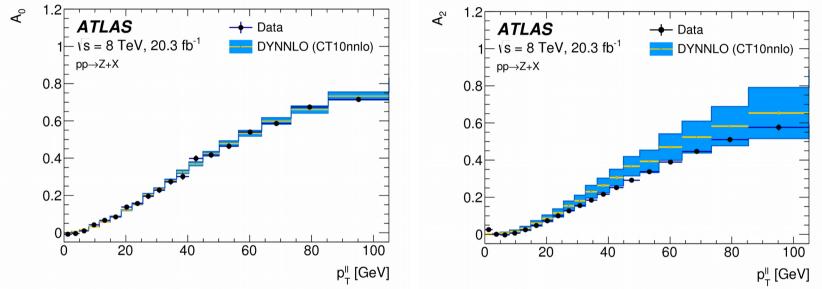
- The lack of agreement with data prevented us from using predictions which are formally more accurate (NNLL)
- $_{\!\! o}$ The effect on the $p_{_{\! T}}$ lepton and $m_{_{\! T}}$ distributions is large and would shift $m_{_W}$ by O(50-100) MeV



Is this a consequence of

- Different treatment of heavy-flavour-initiated production?
- Corrections to the Sudakov due to multi-parton-interactions?
- Poor convergence of the LL, NLL, NNLL series?
- What else?

Rapidity distributions


Rapidity distributions are modelled with NNLO predictions, and the CT10nnlo PDF set, which provides good agreement with data thanks to its milder strangeness suppression. CT14 and MMHT considered as uncertainty, other PDF sets excluded by data

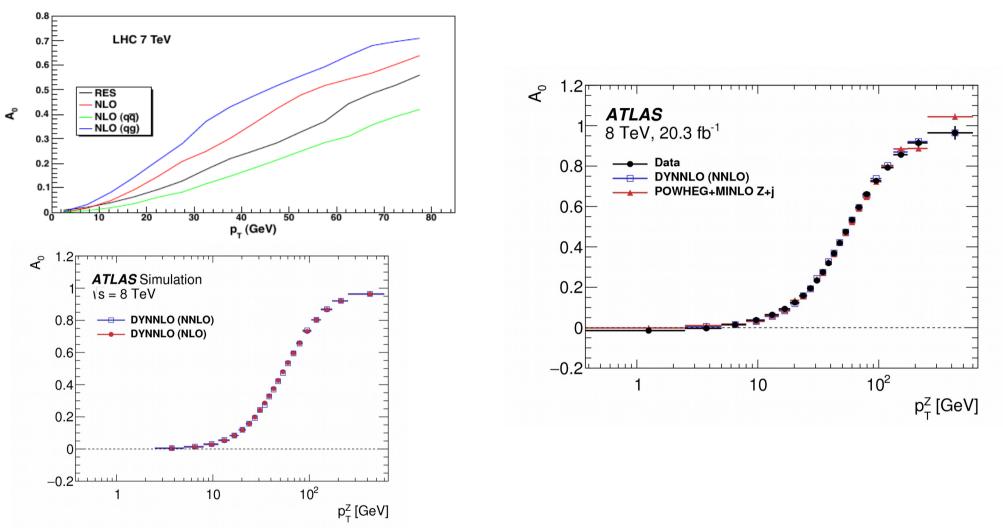
- The composite model of the W^{mass} analysis incorporates PS corrections, and can be seen as a naive "NNLO+PS" prediction for the rapidity cross section measurements in the fiducial phase space
- When comparing the W mass model to pure NNLO fixed order predictions we realised that PS induces corrections which are significant for the current level of precision of the data
- More discussion about PDFs in Jan's talk tomorrow

Physics modelling – angular coefficients A

- Angular coefficients are modelled with fixed order perturbative QCD at NNLO
- A fast prediction was developed, based on DYNNLO, which allows to evaluate statistically correlated PDF uncertainties

A predictions are validated by comparisons to the Z measurement at 8 TeV

- Assume that pQCD is able to propagate from Z to W, since differences between W and Z in the A_i coefficients are determined by the well-known vector and axial couplings of the electroweak gauge bosons
- A_i experimental uncertainties of the Z measurement are propagated to W predictions, plus an additional uncertainty to cover A2 disagreement at high p_τ


Physics modelling – angular coefficients A

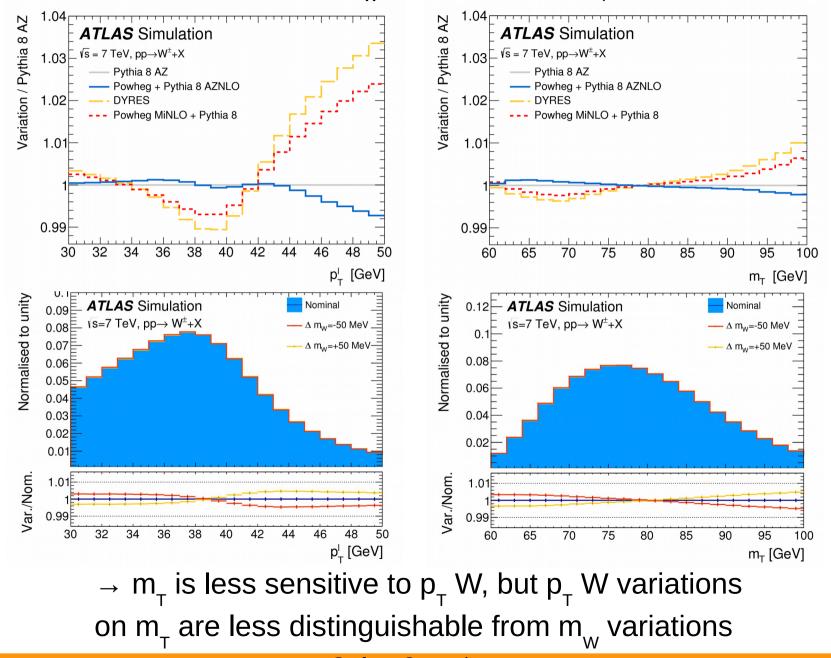
- We have not considered the alternative approach of using theorydriven uncertainties on the QCD predictions for the angular coefficients
- In principle, nowadays it is possible to evaluate the coefficients at $O(\alpha_{s}^{3})$ with V+jet NNLO predictions.

Would scale variations be a sensitive approach to evaluate QCD uncertainties on the A_i ?

Also, when including resummation, another intrinsic QCD uncertainty related to the choice of the quantisation axis in the resummed cross section is introduced, which can be addressed f.i with the qt-recoil prescription of DyRes Given the very good agreement of data and fixed order NNLO prediction even at very low p_τ, is the above uncertainty only a feature of resummed prediction, or does it also affect fixed order calculations?

Physics modelling – angular coefficients A,

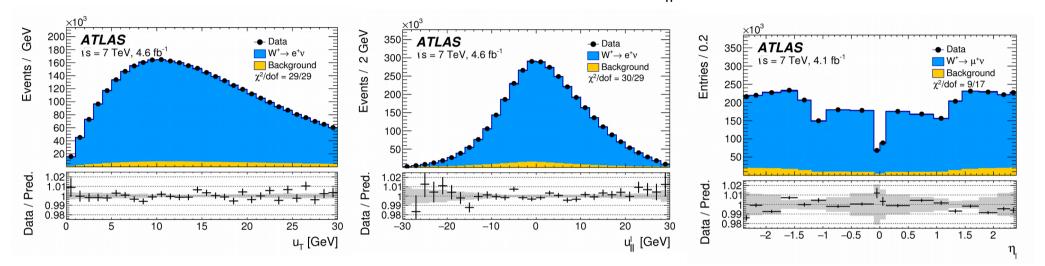
Resbos predictions are in poor agreement with fixed order NLO, which is generally close to NNLO, and in perfect agreement with data. Is this a feature of Resbos or should we conclude that resummed predictions of the angular coefficients are less accurate then fixed order?

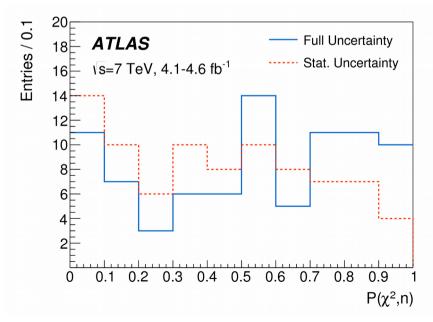

Physics modelling – Summary of QCD uncertainties

V	W-boson charge		W^+		W^-		bined	
Kinematic distribution		p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	
δ	m_W [MeV]							
	Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7	
	AZ tune	3.0	3.4	3.0	3.4	3.0	3.4	
	Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5	
	Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9	
	Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6	
	Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3	
	Total	15.9	18.1	14.8	17.2	11.6	12.9	

- PDFs are the dominant uncertainty, followed by $p_T W$ uncertainty due to heavy-flavour-initiated production
- PDF uncertainties are partially anti-correlated between W+ and W-, and significantly reduced by the combination of these two categories.
- p_{T} W uncertainties are similar for m_{W} extracted from p_{T} lepton and from m_{T}

p_{T} W uncertainties on p_{T} lepton and m_{T}

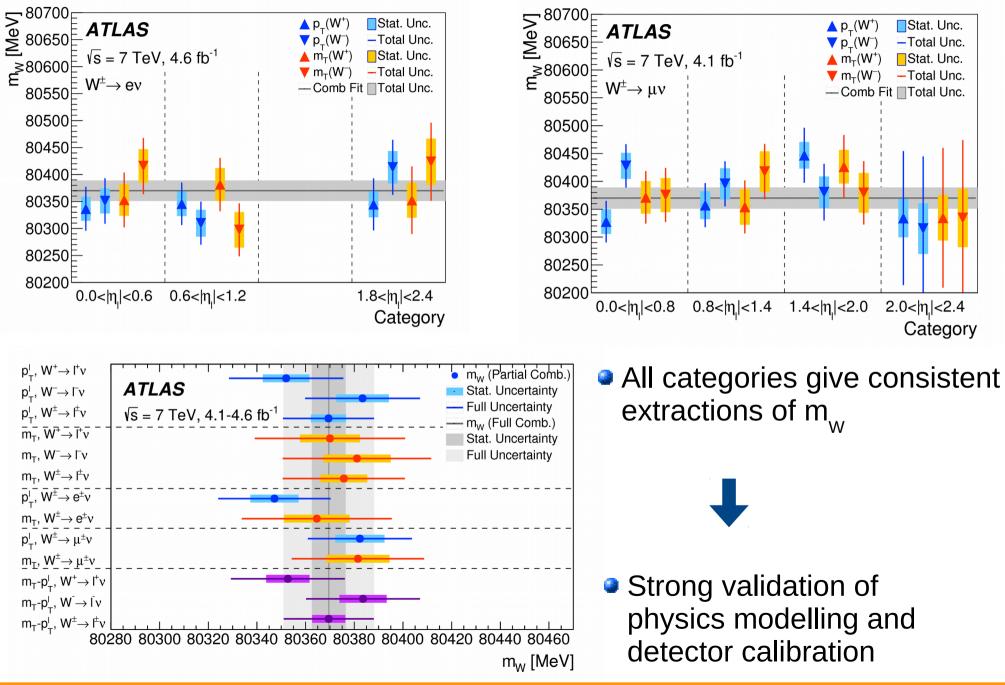

 p_{\perp} W uncertainties are similar for m_{μ} extracted from p_{\perp} lepton and from m_{\perp}



Stefano Camarda

Physics modelling validation – control plots

• The physics modelling (and the detector calibration) is validated with control plots which have little sensitivivity to m_w as u_{τ} , u_{μ} , $|\eta^{i}|$



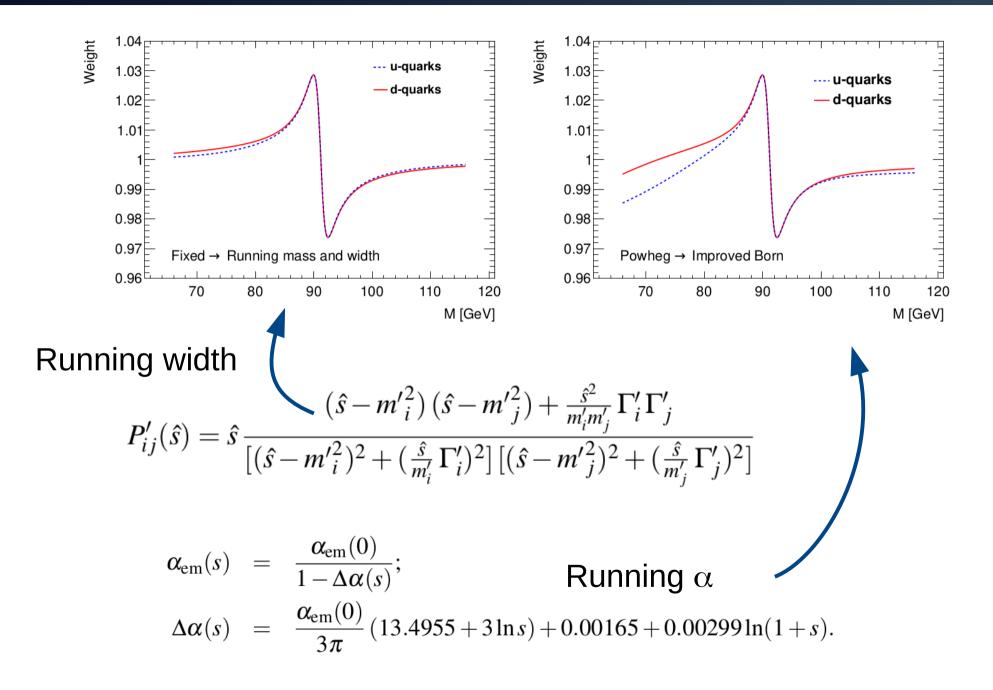
• The distribution of the χ^2 probabilities for the 84 control and post-fit distributions considered in the measurement is flat

Physics modelling validation – categories

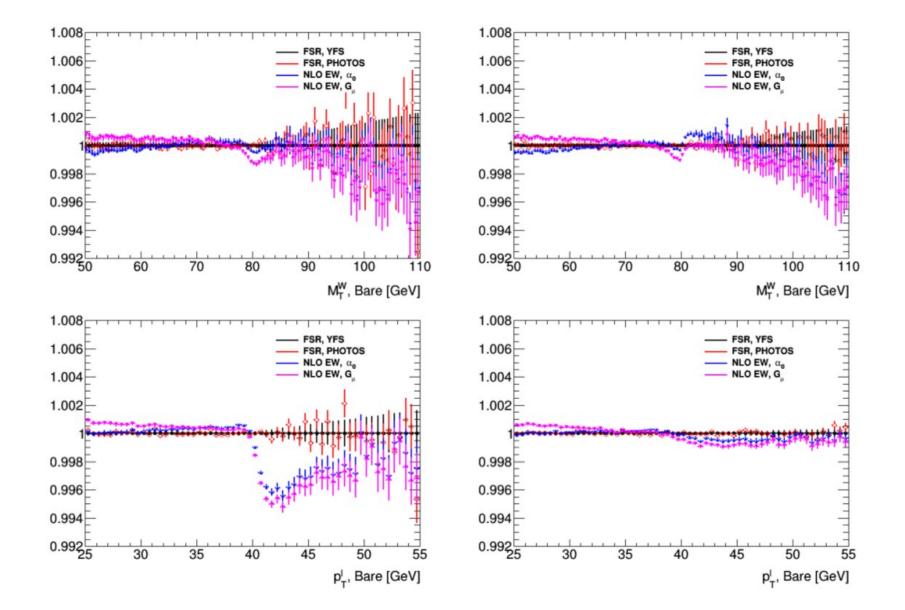
- A crucial aspect of the measurement design is the categorisation. The importance of categories is twofold: validate detector calibration and physics modelling and improve accuracy
- The various set of categories are sensitive to different experimental and theoretical biases, the consistency of m_w across categories validates our knowledge of the detector and of QCD
- We considered the measurement ready for unblinding only when all the categories yield consistent values of m_w
- The experimental and theoretical uncertainties have different correlation or anticorrelation patterns, the categorisation allows to constrain them, and increase the sensitivity to m_w
- Categories used for the combination (28 in total): p_T lepton – m_T Electrons – muons, $|\eta|$ lepton bins, W+ – W-
- Categories used for cross checks: Average <μ> (pile-up), u_τ(recoil), u_μ

Compatibility of categories

Stefano Camarda

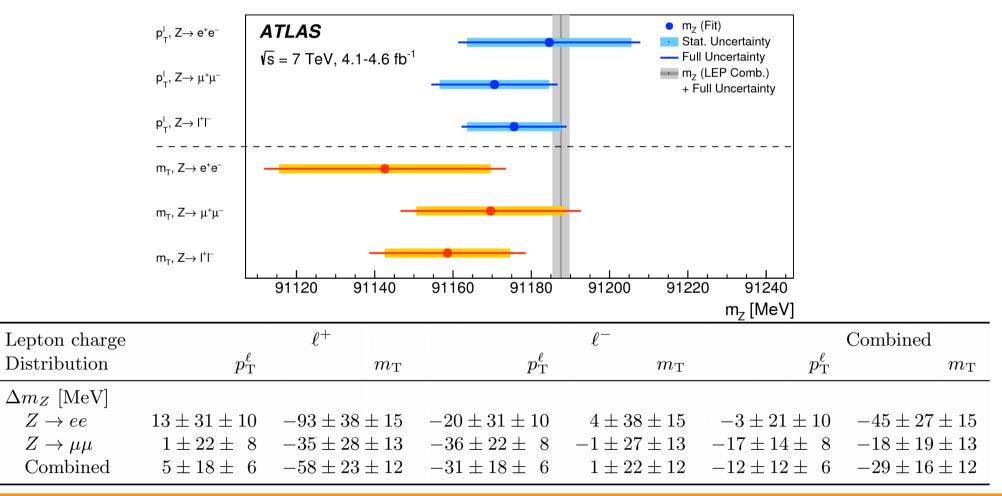

- The physics modelling for the measurement of the W mass in ATLAS is built as a composite model which includes EW and QCD corrections
- A fundamental aspect of the model is the use of ancillary DY measurement for validation, and, when possible, to fit the free parameters of the model
- Further validation is provided by Z-boson mass fits, W-boson control plots, and categorisation of the m_w measurement
- Important innovations of the physics modelling with respect to the previous model used at the Tevatron are the treatment of uncertainties of the heavy-flavour-initiated processes, and the NNLO QCD corrections for the angular coefficients and their associated uncertainties

Prospects for the physics modelling


- PDF uncertainties can be reduced by the inclusion of precise W, Z inclusive rapidity measurement, currently used only for the validation. Requires work from theorists to include PS corrections in PDF fits.
- p_T W uncertainties can be reduced by using higher-order predictions based on analytical resummation, and with fits to Z pT 8 TeV measurement, which is more precise than the 7 TeV measurement, and has low- and high-mass distributions which can constrain heavyflavour-initiated production. Usage of higher order predictions requires theorists to understand the discrepancy between PS models and NNLL resummation in the W/Z pt ratio.
- Thanks to the precise measurement at 8 TeV, uncertainties on the angular coefficients are currently not a limiting factor. In the future they can be reduced with more precise predictions and more precise measurements

BACKUP

Physics modelling – electroweak corrections



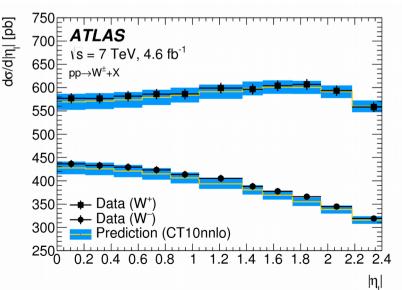
Physics modelling – electroweak corrections

Physics modelling validation – Z-boson mass

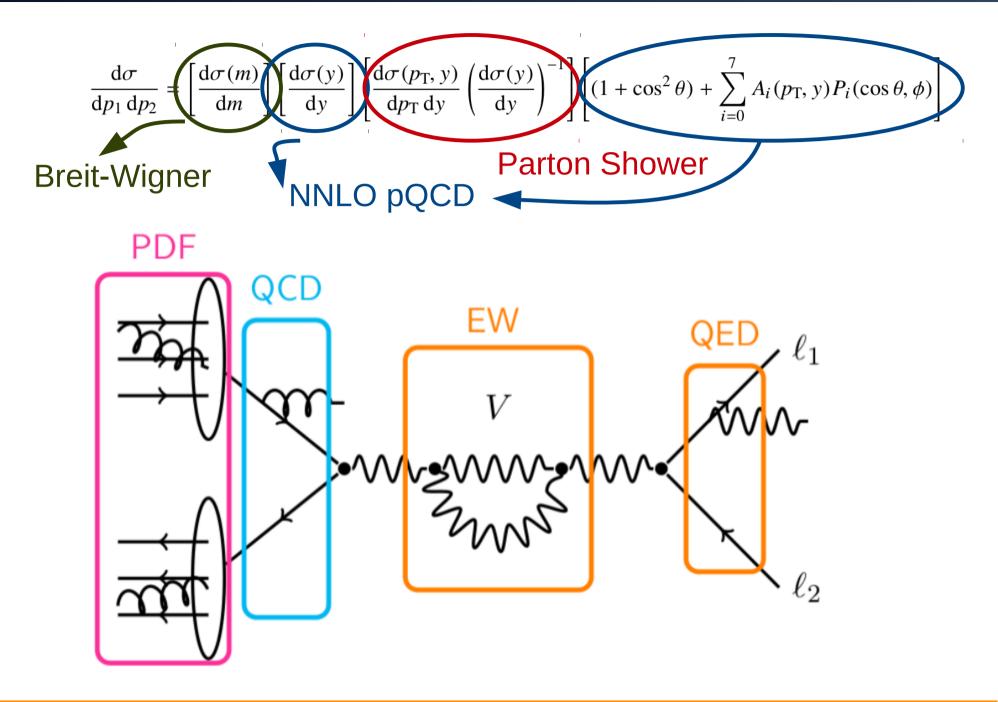
- The physics modelling (and the detector calibration) is first validated by performing an extraction of m₂
- The extraction is a closure test, and not a measurement of m_z, because the LEP measurement is used as input for detector calibration

Physics modelling validation – categories

 p_{T} lepton is very sensitive to $p_{T}W$ modelling, polarisation, PDFs, m_{T} is less


sensitive to these effects Events TLAS Internal ATLAS Internal 🗕 Data Data Event 400 400 ∎W⁺→ u⁺ν **₩**⁺→ μ+ν $\sqrt{s} = 7 \text{ TeV} 4.1 \text{ fb}^{-1}$ $\sqrt{s} = 7$ TeV. 4.1 fb⁻ Backgrounds Backgrounds 350 350 Biases in the QCD 300 300 modelling would produce 250 200 discrepancies between p₊ 150 150 100 100 lepton and m₋ В 1.02 1.01 ž determinations of m Data 0.99 0.98 0.98 32 60 70 80 100 p^l [GeV] m^w [GeV]

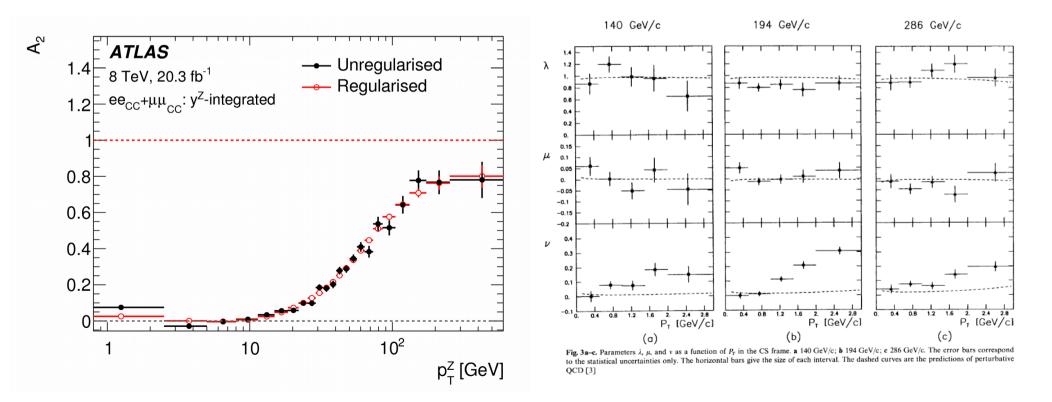
W+ and W- have different helicity states, and are produced by different quark flavours in the initial state. Charm-initiated production is relatively larger for W-


 $|\boldsymbol{\eta}|$ lepton bins are sensitive to PDFs

Biases in the modelling of the W polarisation or HFI production would produce discrepancies between W+ and W- determinations of m_w

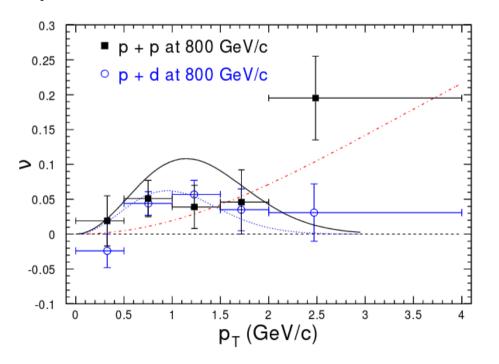
Some of the PDF uncertainties are anticorrelated between W+ and W-, and in $|\eta|$ bins. The combination reduce PDF uncertainties

Physics modelling



Z-boson angular coefficients at 8 TeV

A cos(2¢) asymmetry which violates the Lam-Tung relation at low pt was observed in fixed target experiments


$$P_2(\cos\theta,\phi) = \frac{1}{2}\sin^2\theta\cos 2\phi \qquad \frac{d\sigma}{d\Omega} \propto 1 + \lambda\cos^2\theta + \mu\sin 2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos 2\phi$$

A2 at low p_{τ}

- A cos(2¢) asymmetry which violates the Lam-Tung relation at low pt was observed in fixed target experiments
- The effect can be explained by higher twist effects, QCD vacuum effects, or by the Boer-Mulders TMD functions, which describe a correlation between transverse momentum and transverse spin of quarks

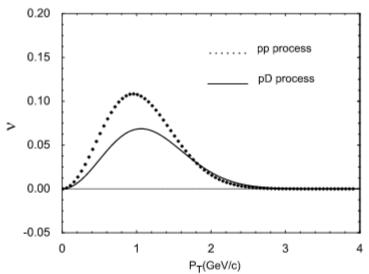
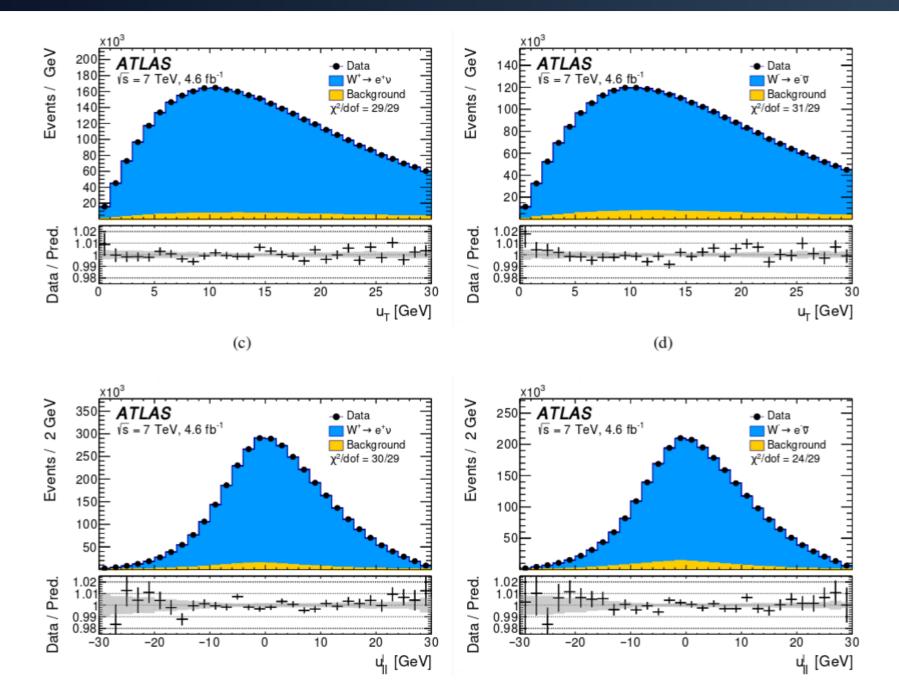


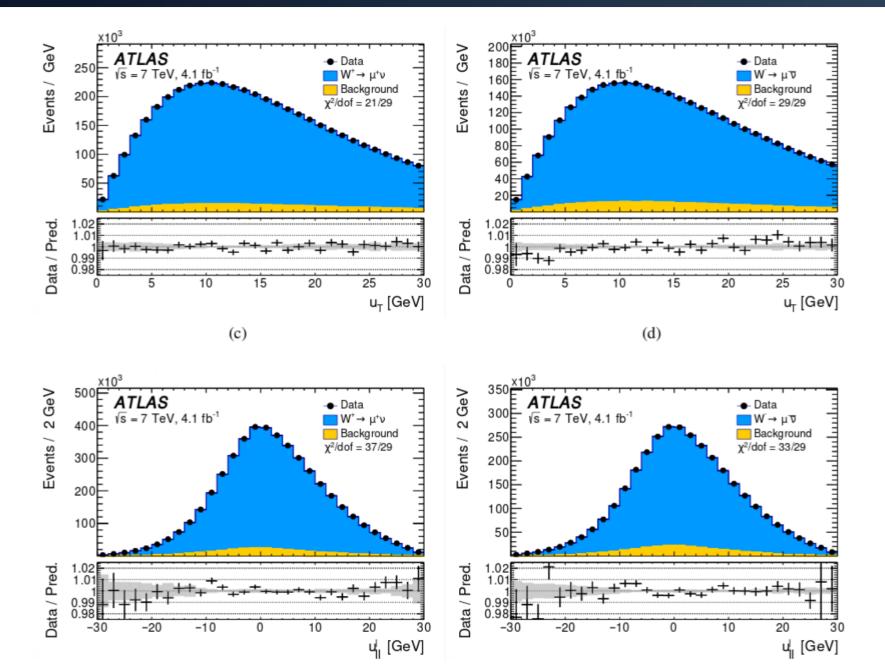
FIG. 4: The p_T -dependent $\cos 2\phi$ asymmetries v in both pp (dotted curve) and pD(solid curve) Drell-Yan processes at FNAL E866/NuSea, calculated with the fitted Boer-Mulders functions presented in Table **1**.

What is the possible influence on the W mass measurement


Measurement strategy – categories for cross check

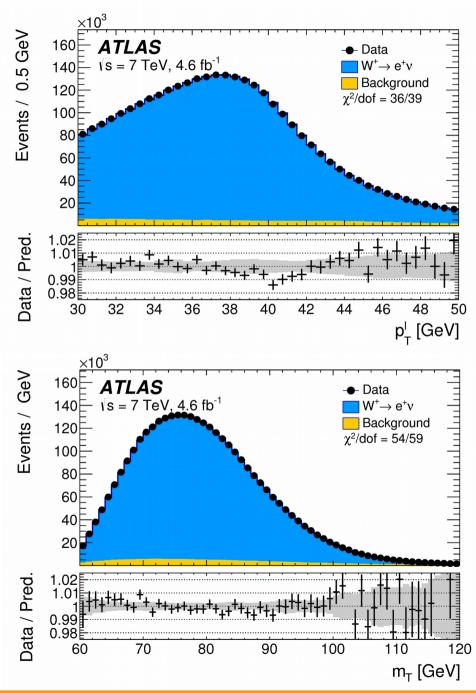
• Recoil bins $(u_{\tau}) \rightarrow Validate p_{\tau} W$ modelling and recoil calibration

• Upar bins \rightarrow Validate p_{τ} W modelling


Decay channel	V	$V \to e\nu$	V	$V \to \mu \nu$	Combined		
Kinematic distribution	p_{T}^ℓ	$m_{ m T}$	p_{T}^{ℓ}	$m_{ m T}$	p_{T}^ℓ	$m_{ m T}$	
$\Delta m_W [{ m MeV}]$							
$\langle \mu \rangle$ in [2.5, 6.5]	8 ± 14	14 ± 18	-21 ± 12	0 ± 16	-9 ± 9	6 ± 12	
$\langle \mu angle { m in} \left[6.5, 9.5 ight]$	-6 ± 16	6 ± 23	12 ± 15	-8 ± 22	4 ± 11	-1 ± 16	
$\langle \mu \rangle$ in [9.5, 16]	-1 ± 16	3 ± 27	25 ± 16	35 ± 26	12 ± 11	20 ± 19	
$u_{\rm T}$ in $[0, 15]GeV$	0 ± 11	-8 ± 13	5 ± 10	8 ± 12	$3\pm~7$	-1 ± 9	
$u_{\rm T}$ in $[15, 30]GeV$	10 ± 15	0 ± 24	-4 ± 14	-18 ± 22	2 ± 10	-10 ± 16	
$\overline{u_{ }^{\ell} < 0 GeV}$	8 ± 15	20 ± 17	3 ± 13	-1 ± 16	5 ± 10	9 ± 12	
$egin{aligned} u_{\parallel}^{\ell} &< 0GeV \ u_{\parallel}^{\ell} &> 0GeV \end{aligned}$	-9 ± 10	1 ± 14	-12 ± 10	10 ± 13	$-11\pm~7$	6 ± 10	
No $p_{\rm T}^{\rm miss}$ -cut	14 ± 9	-1 ± 13	10 ± 8	-6 ± 12	12 ± 6	-4 ± 9	

Control plots - electrons

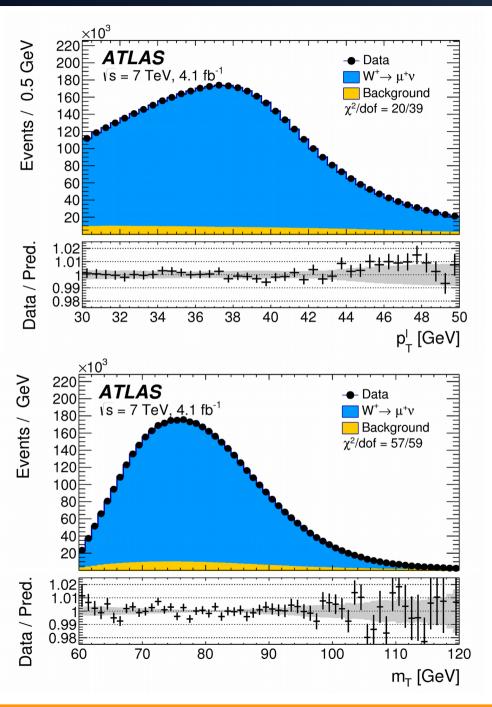
Stefano Camarda

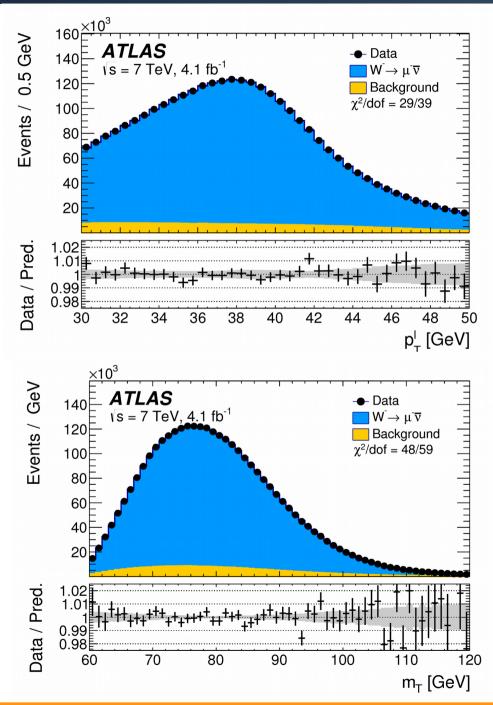

Control plots - muons



Measurement categories

Channel	m_W	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total
$m_{\mathrm{T}} ext{-}\mathrm{Fit}$	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
$W^+ \to \mu \nu, \eta < 0.8$	80371.3	29.2	12.4	0.0	15.2	8.1	9.9	3.4	28.4	47.1
$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80354.1	32.1	19.3	0.0	13.0	6.8	9.6	3.4	23.3	47.6
$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80426.3	30.2	35.1	0.0	14.3	7.2	9.3	3.4	27.2	56.9
$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.6	40.9	112.4	0.0	14.4	9.0	8.4	3.4	32.8	125.5
$W^- ightarrow \mu u, \eta < 0.8$	80375.5	30.6	11.6	0.0	13.1	8.5	9.5	3.4	30.6	48.5
$W^- \to \mu \nu, 0.8 < \eta < 1.4$	80417.5	36.4	18.5	0.0	12.2	7.7	9.7	3.4	22.2	49.7
$W^- \to \mu \nu, 1.4 < \eta < 2.0$	80379.4	35.6	33.9	0.0	10.5	8.1	9.7	3.4	23.1	56.9
$W^- \to \mu \nu, 2.0 < \eta < 2.4$	80334.2	52.4	123.7	0.0	11.6	10.2	9.9	3.4	34.1	139.9
$W^+ \rightarrow e\nu, \eta < 0.6$	80352.9	29.4	0.0	19.5	13.1	15.3	9.9	3.4	28.5	50.8
$W^+ \to e\nu, 0.6 < \eta < 1.2$	80381.5	30.4	0.0	21.4	15.1	13.2	9.6	3.4	23.5	49.4
$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80352.4	32.4	0.0	26.6	16.4	32.8	8.4	3.4	27.3	62.6
$W^- \rightarrow e\nu, \eta < 0.6$	80415.8	31.3	0.0	16.4	11.8	15.5	9.5	3.4	31.3	52.1
$W^- \to e\nu, 0.6 < \eta < 1.2$	80297.5	33.0	0.0	18.7	11.2	12.8	9.7	3.4	23.9	49.0
$W^- \rightarrow e\nu, 1.8 < \eta < 2.4$	80423.8	42.8	0.0	33.2	12.8	35.1	9.9	3.4	28.1	72.3
$p_{\mathrm{T}} ext{-}\mathrm{Fit}$										
$W^+ \to \mu \nu, \eta < 0.8$	80327.7	22.1	12.2	0.0	2.6	5.1	9.0	6.0	24.7	37.3
$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80357.3	25.1	19.1	0.0	2.5	4.7	8.9	6.0	20.6	39.5
$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80446.9	23.9	33.1	0.0	2.5	4.9	8.2	6.0	25.2	49.3
$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.1	34.5	110.1	0.0	2.5	6.4	6.7	6.0	31.8	120.2
$W^- ightarrow \mu u, \eta < 0.8$	80427.8	23.3	11.6	0.0	2.6	5.8	8.1	6.0	26.4	39.0
$W^- \to \mu \nu, 0.8 < \eta < 1.4$	80395.6	27.9	18.3	0.0	2.5	5.6	8.0	6.0	19.8	40.5
$W^- \rightarrow \mu\nu, 1.4 < \eta < 2.0$	80380.6	28.1	35.2	0.0	2.6	5.6	8.0	6.0	20.6	50.9
$W^- \rightarrow \mu\nu, 2.0 < \eta < 2.4$	80315.2	45.5	116.1	0.0	2.6	7.6	8.3	6.0	32.7	129.6
$W^+ \to e\nu, \eta < 0.6$	80336.5	22.2	0.0	20.1	2.5	6.4	9.0	5.3	24.5	40.7
$W^+ \to e\nu, 0.6 < \eta < 1.2$	80345.8	22.8	0.0	21.4	2.6	6.7	8.9	5.3	20.5	39.4
$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80344.7	24.0	0.0	30.8	2.6	11.9	6.7	5.3	24.1	48.2
$W^- ightarrow e u, \eta < 0.6$	80351.0	23.1	0.0	19.8	2.6	7.2	8.1	5.3	26.6	42.2
$W^- \to e \nu, 0.6 < \eta < 1.2$	80309.8	24.9	0.0	19.7	2.7	7.3	8.0	5.3	20.9	39.9
$W^- \rightarrow e\nu, 1.8 < \eta < 2.4$	80413.4	30.1	0.0	30.7	2.7	11.5	8.3	5.3	22.7	51.0


Post fit plots - electrons



Stefano Camarda

Post fit plots - muons

Methodology for the W mass extraction

- Event selection: W leptonic decay
 W → I ν, I = e, μ
- The full kinematic of the W decay cannot be reconstructed, since the longitudinal momentum of the neutrino is unknown

The analysis is based on a template fit extraction from observables sensitive to m_w

E_T Electron P^W P^T U U Neutrino Underlying event Hadronic recoil

Lepton transverse momentum

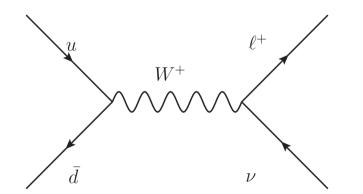
W transverse mass

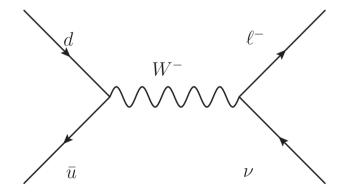
$$M_T = \sqrt{2 \cdot p_T^l p_T^{\nu} \cdot (1 - \cos \Delta \phi (l))}$$

 p_T^l

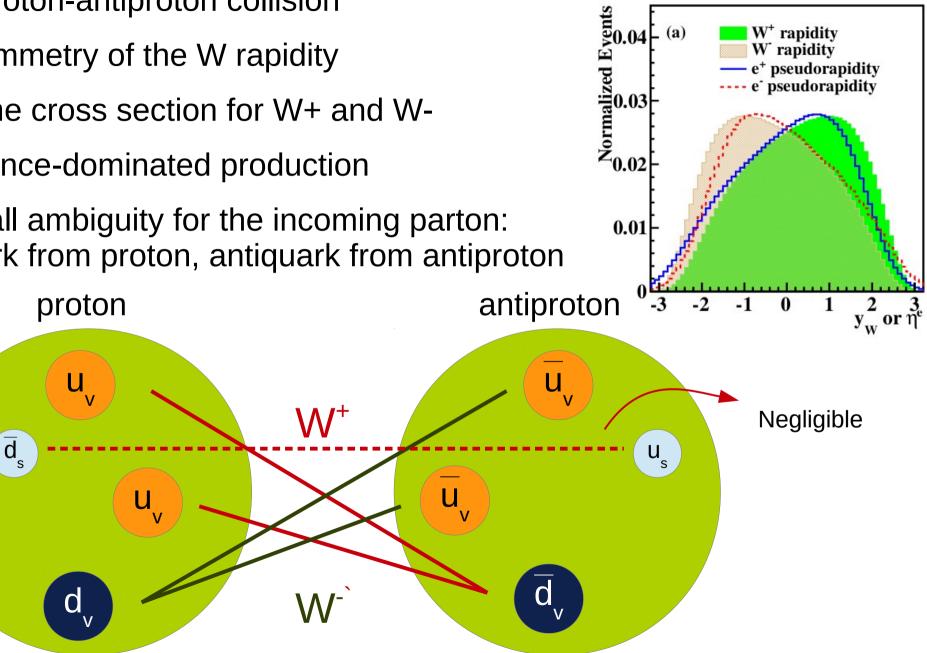
Neutrino transverse momentum (from hadronic recoil)

 $p_T^
u$ (Not used)


A key ingredient of the W mass measurement is to use Z \rightarrow II events to constraint both experimental and theory systematics


 $, \nu$

- Sea quarks composition of protons is charge symmetric
 - \rightarrow same amount of q and \overline{q} from sea
- Valence quarks determines a charge asymmetry in the proton:


$$u = u_v + u_s \qquad u = u_s$$
$$d = d_v + d_s \qquad \overline{d} = \overline{d}_s$$

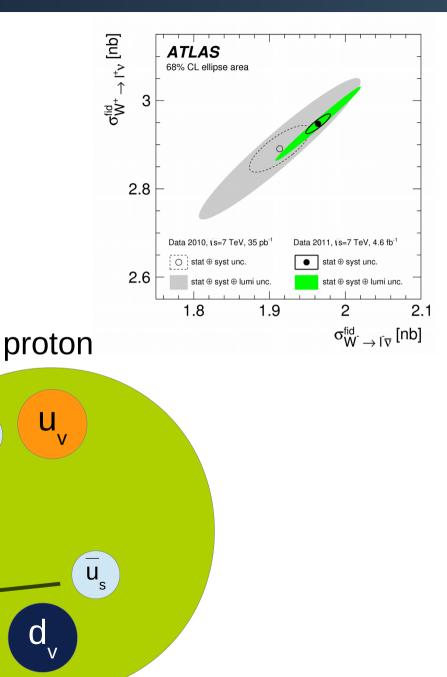
What is the effect of this valence asymmetry for Charged Current Drell-Yan (W-boson) production?

- In proton-antiproton collision
- Asymmetry of the W rapidity
- Same cross section for W+ and W-
- Valence-dominated production
- Small ambiguity for the incoming parton: guark from proton, antiguark from antiproton

 Λ^+

In proton-proton collision

proton


U,

C

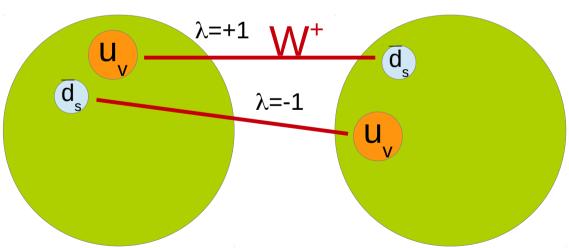
U

 \overline{d}_{s}

- Different cross section for W+ and W-
- Large ambiguity in the direction of the incoming quark

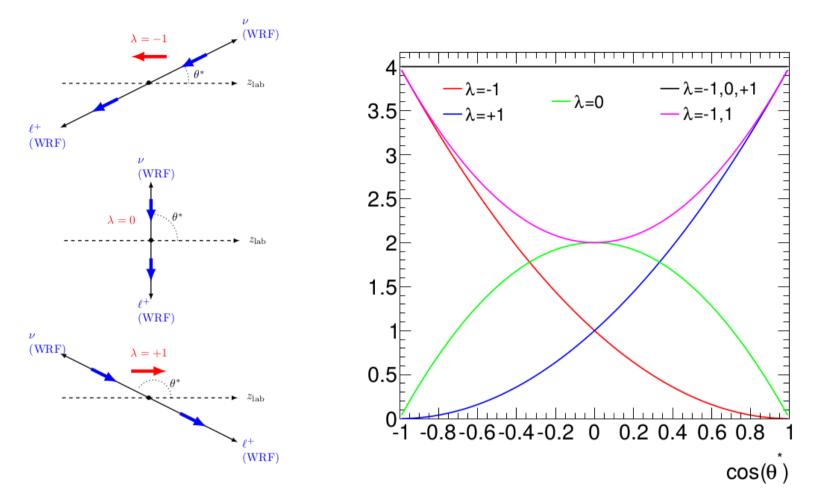
 \overline{d}_{s}

U


V

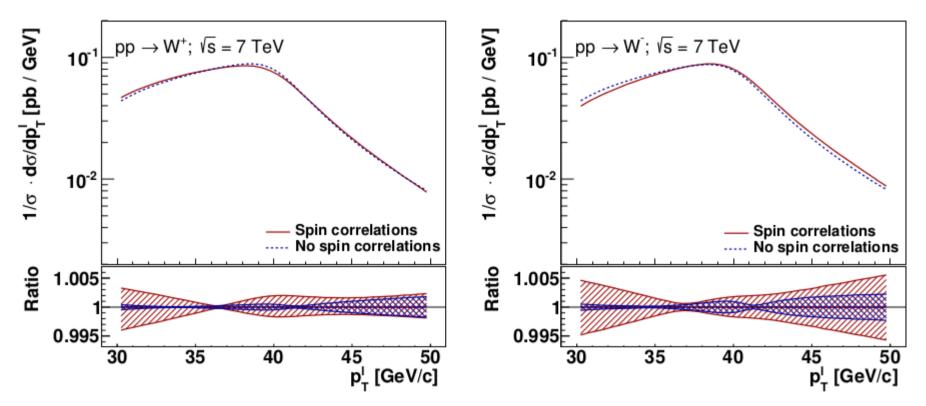
0

What is the consequence of the ambiguity in the direction of the incoming quark?

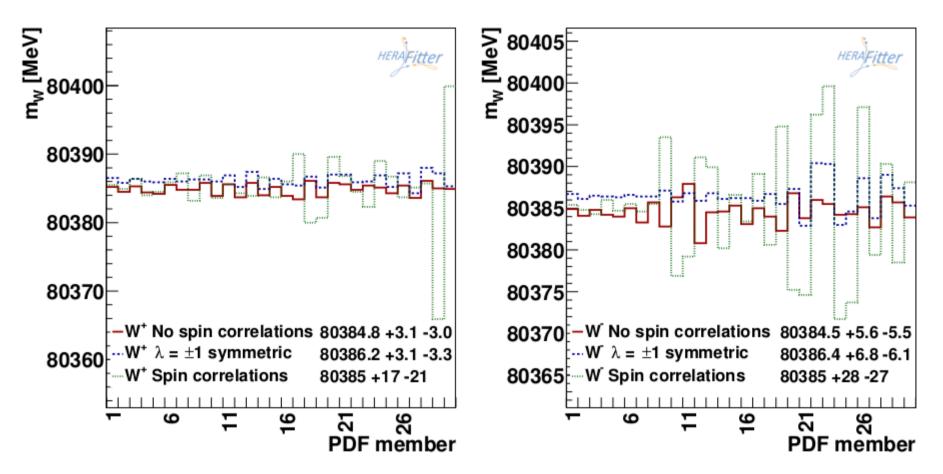

$$\sigma_{W^+}(y) \propto u(x_1) \cdot \overline{d}(x_2) + \overline{d}(x_1) \cdot u(x_2)$$

 $\sigma_{W^-}(y) \propto d(x_1) \cdot \overline{u}(x_2) + \overline{u}(x_1) \cdot d(x_2)$

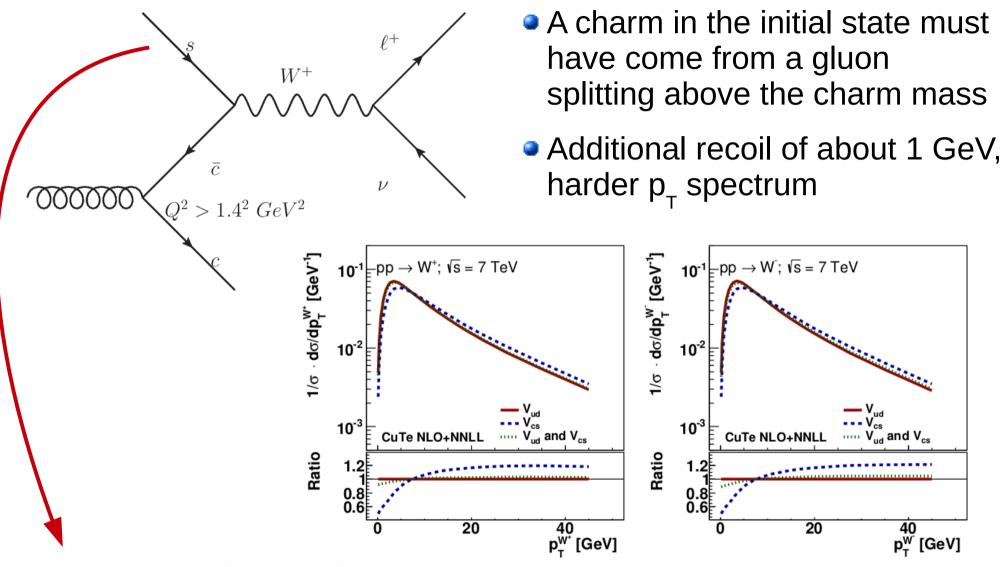
- The helicity is the projection of the spin on the momentum axis
- The W is a spin 1 particle, with 3 possible helicity states: $\lambda = +1,0,-1$
- Ambiguity in the average helicity of the W (polarisation)


PDF uncertainty \rightarrow polarisation uncertainty

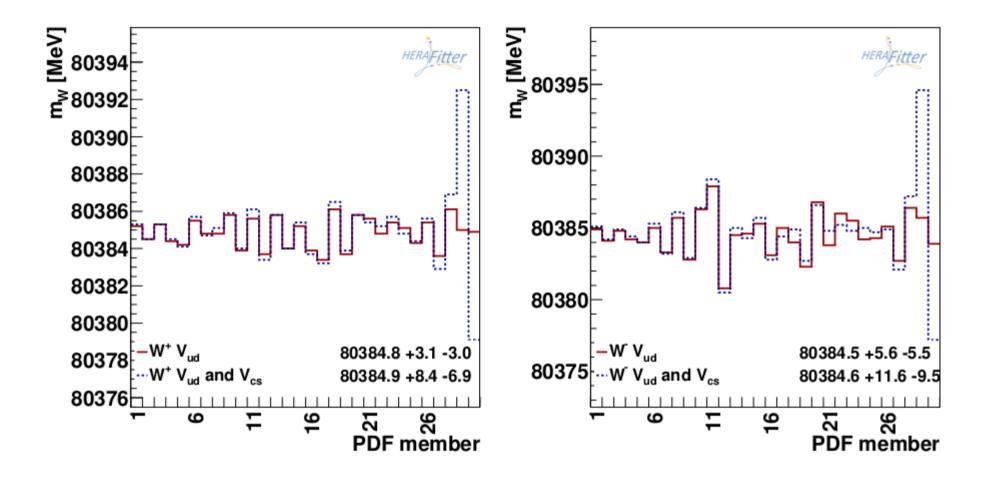
W polarisation


- The 3 helicity states have very different decay polar angles
- The average polarisation heavily affects the lepton kinematic

W polarisation


- We can artificially remove the ambiguity in the W helicity by removing spin correlations → Unpolarised W
- Dramatic effect on PDF uncertainties of lepton p₁ distribution

W polarisation


 This effect accounts for 20 (30) MeV uncertainty to the W mass extracted from W+ (W-) lepton p_T

The effect of the charm mass

The uncertainty on the strange PDF translates into an uncertainty on the charm-initiated W production

The effect of the charm mass

The uncertainty on the strange PDF accounts for 7-9 MeV on the W mass extracted from the lepton p_{τ}