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Measurement of the W-boson mass - Overview

@ Introduction: motivation and experimental context
@ Measurement overview
@ Results

@ Detailed discussion of the analysis
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Precision measurements of EW parameters

@ After the measurement of the Higgs
mass, all the free parameters of the
Standard Model are known

@ Relations between electroweak
observables can be predicted (almost)
at 2-loop level

A (LEP)
A (SLD)

Precise measurements of the
EW parameters allow

@ Stringent test of self
consistency of the SM

m,

@ Look for hints of BSM physics

Why is m , of special importance in the EW fit?
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http://arxiv.org/abs/1407.3792

Measurement of the W mass

The EW sector of the SM, relates M__ Radiative corrections Ar are
to a. G . and sin0 dominated by Top and Higgs loops
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Experimental measurements at colliders

@ The W mass can be measured from: T

@ Kinematic properties of decay leptons in the SPS. Tevatron
final state in pp - W - lv processes (hadron ’LHC |
colliders)

@ Direct reconstruction from the final state in LEP best
ee - WW - gqgqg/qglv (e+e- colliders) measurements

@ W-pair production at thresholds (e+e- colliders)

- 8 201LEP | .
\_,y Limited by stat at LEP, but 9; VFSWW and Facoon W
most precise prospect ¢ + |

101
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Experimental background — W mass history

M, [GeV]

: @ 1983 CERN SPS — W discovery
o wwis 21083 — UAL

7 m MW7

] Tevatron

y + e mW =81 + 5 GeV
] m CDF

LEP @ 1992 — UA2 (with mZ from LEP)

1 e OPAL

S e T ke mW = 80.35 + 0.37 GeV
E‘ ?—\i | 11T 11T T IIIIIII I.IIII 1 || + DELPHI
S SppS
sor 0 7 tew @2013-LEP

mW = 80.376 + 0.033 GeV
@ 2013 — Tevatron
mW = 80.387 + 0.016 MeV

1980 1985 1990 1995 2000 2005 2010 2015 2020
year
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Experimental context — W mass status

ALEPH e 80.440£0.051
L3 —_— 80.270+0.055
OPAL ——-— 80.41520.052
LEP2 —=— 80.376+0.033

Xe/dof = 49 / 41

DO + 80.383+0.023
Tevatron + 80.387x0.016
: XC/dof = 4216
Overal| average | -:-J ., 80.385x0.015
80.2 80.6
M, [GeV]

@ The world average has an
uncertainty of 15 MeV, and Is
currently dominated by CDF and
DO

@ This was quite a surprise, The
Tevatron was built to discover
the top quark, not to do a precise
measurement of W mass

@ But precision comes at a price:
the W-mass measurements at
CDF and DO are known as the
longest measurements in HEP,
they lasted about 7 years
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W mass — future prospects

20+

LEP

m,, can be measured at e“e” colliders through
an energy scan of the WW production threshold

Syw (PP)

Near threshold, the WW cross sectionis —— ~a. "]

proportional to the non-relativistic W velocity

O'(WW) X BW
arXiv:1306.6352
ILC Giga-Z program

YFSWW and RacoonWWwW
4
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Phys.Rept. 532 (2013) 119-244 ps (GeV)

s Energy scan 160t0 170 GeV — A £ [ G omiaeddam
a 6MW = 6-7 MeV ; ] / , ]
3 T 80.31 GeV ]

JHEP 1401 (2014) 164 e | + " :
TLEP OkuW program Lot [ + .................. ;
2 OM,_ = 0.5 MeV ! 80.38 Gey ¥
— dominated by statistical uncertainty o s0.47 00—
Dominant theory uncertainties % -
@ |nitial state QED corrections - | o . =

@ Parametrization of cross section near threshold

LC PHSM-2001-009

Physics at LHC and beyond Stefano Camarda
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http://arxiv.org/abs/arXiv:1306.6352
http://www-flc.desy.de/lcnotes/notes/LC-PHSM-2001-009.ps.gz
http://arxiv.org/abs/arXiv:1308.6176
http://arxiv.org/abs/arXiv:1302.3415

W mass status — present

80389 + 19 MeV - current best single measurement (CDF)
80385 + 15 MeV - world average (PDG)
80358 + 8 MeV - indirect determination from the EW fit (GFitter)
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W mass at the LHC

@ The LHC was not built to measure the W mass, but to discover new
physics with direct searches

@ Indeed, a proton-proton collider is the most challenging enviroment
to measure m , worse compared to e+e- and proton-antiproton

@ The important difference between Tevatron and LHC, is that in pp
collisions W production is dominated by valence quarks, while in pp
the sea quarks and the heavy quarks are important contribution

@ This difference affects all aspects of the measurement, detector
calibration, transfer from Z to W, PDF uncertainties, W polarisation,
modelling of p_ W

@ The measurement of m at the LHC is extremely challenging and

prone to biases due to QCD effects. Need to design the
measurement to be “waterproof” from the point of view of detector
calibration and physics modelling

@ At the same time, the challenge makes it very interesting, and
provides a great occasion to test and learn QCD

Stefano Camarda 10



W mass at the LHC - Psychological profile

Are you?

Optimist Pessimist
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W mass at the LHC - Psychological profile
Are you?

Optimist Pessimist

__________________________________________________________________________ Eur. Phys. J. C (2010) 69: 379-397
E— Eur. Phys. J. C (2008) 57: 627-651 DOI 10.1140/epjc/s10052-010-1417-0

« DOL 10.1140/epjc/s 10052-008-0774-4

: ; : o Regular Article - Experimental Physics
+ Special Article - Scientific Note

' Re-evaluation of the LHC potential for the measurement of mwé AMw <10 MeV/c? at the LHC: a forlorn hope?*

: Nathalie Besson ', Maarten Boonekamp’"" Esben K]illl(l:i\"j Sascha Mehlhase?, Troels Petersen’- !
| » * PR * ! o)
L T L L L L L L ] M.W. K 15-(1’ F. Dvdal ,F.F tt I,WP‘I ]3’ A. Siéd ] 1.3

2010 om = 100-150 MeV

Stefano Camarda 12



Measurement strategy

@ m  extracted with template fits to p_ lepton and
transverse mass (m.)

@ Physics modelling

@ Calibration

@ Z-boson cross checks

@ Background

@ Combination
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Measurement strategy

@ m  extracted with template fits to p_ lepton and
transverse mass (m.)

@ Build the physics modelling by supplementing
the MC samples with higher-order corrections
and fits to DY ancillary measurements

@ Use Z - Il events to calibrate the detector
response to the energy scales and resolutions
of the leptons and of the recaoll

@ Validate the physics modelling and the calibration by extracting m,
from the Z sample

@ Estimate and subtract the backgrounds in the W sample

@ Extract m  in several categories and combine
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Definitions, Event selection, blinding

@ The recoll is the vector sum of the transverse P Z E |
energy of all the calorimeter clusters. u_ IS a T = _ L.
1

measure of p_ W

@ upar and uperp are the parallel and
perpendicular projections of the recoll on the
charged lepton (W events) or on the dilepton

p_ (Z events) |
T Event selection

@ p_nu is inferred from the momentum a p. lepton > 30 GeV
.
Imbalance in the transverse plane eot )4
smiss S o @ |n| lepton < 2.
p'?nm - _ (p'Ié‘J +HT) |T]| P
e m_> 60 GeV

@ m_ inthe MC is blinded by an additive » p_miss > 30 GeV

offset of 80399 MeV +- b with b a
random number in [-100,100] MeV su_<30GeV
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Measurement strategy - categories

@ A crucial aspect of the measurement design is the categorisation
@ The importance of categories is twofold

@ Validate detector calibration and physics modelling

@ I[mprove accuracy

@ The various set of categories are sensitive to different experimental
and theoretical biases, the consistency of m  across categories

validates our knowledge of the detector and of QCD

@ The measurement is ready for unblinding only when all the
categories yield consistent values of m

@ The experimental and theoretical uncertainties have different
correlation or anticorrelation patterns, the categorisation allows to
constrain them, and increase the sensitivity tom
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Measurement strategy - categories

@ Categories used for the combination (28 in total)
@ p_ lepton —m_
@ Electrons — muons
@ [n| lepton bins
@ W+ — W-
@ Categories used for cross checks
@ Average <u> (pile-up)
@ Recoil u_(measure of the p_ of the W-boson)

@ upar (projection of the recoil on the charged lepton)
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Measurement strategy — categories p_lepton —m_

p. lepton is almost insensitive m_is sensitive to the recoil,
to the recoil, and very and less sensitive to p. W

sensitive to p, W modelling, modelling, polarisation, PDFs
polarisation, PDFs

x10 0

2 "EATLAS Intérnal - Data ] £ SOEATLAS Internal T eaa |
¢ 400E s _7Tev, 41 b EwW- v S Q 4005 -7 Tev, 4.1 o BW- v 3
W 350 Backgrounds — W 350 Backgrounds —
300 = 300F- =
250 - 250 =
200 = 200F- —
E 150 =
E 100E =
= 50 —

R e R e )
§ e | | | | | | | | | aj _'g ggg? + 'I'_ ..... i
30 32 34 36 38 40 42 44 46 ; 1?3 . \/5]0 o 75 =5 85 % 100 10 120
T m¥ [GeV]

@ Biases in the QCD modelling would produce discrepancies between p_
lepton and m_ determinations of mW

@ Biases in the recoll calibration affects m_, but leaves p_lepton almost
Invariant
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Measurement strategy — categories e — u.

@ Electron and muon decay channels independently test
@ Muon momentum and electron energy calibrations
@ Efficiencies scale factors

@ Multijet background estimation

W e e e e e e I AL LA B -
- — D gdJ @ T e rrrrtorrrrrrrrrorrr T T =
£ 30000:_ATLAS Internal ;Z_afaee E o ATLAS nieral s -
S —Vs=7TeV,46fb 3 © 6000015 = 7 TeV. 4.1 fb” Wz- w —
L - Backgrounds O LI>J - o -
25000— — 50000F- Backgrounds =
200007 = 40000F- E
15000 E 30000 E
10000F— E 200007 E
>0001— E 10000F- -

Q osfF T3
= ‘-05fHﬂT F +H E Q R E
= 0 LTI = o P U P A o A H S 105k .
& 0950 L ; g :
C 1 I I I I I I I I | - 095 e o —
= 80 82 84 8 88 90 92 94 96 98 100 S -~ — — — AN

80 82 84 8 88 90 92 94 96 98 100

Mg [GeV]

m,,, [GeV]
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Measurement strategy — categories W+ — \W-

@ Positively- and negatively-charged W bosons and |n| lepton bins

@ W+ and W- have different helicity states, and are produced by
different valence and sea quark flavours in the initial state

@ Charm-initiated production is relatively larger for W-

@ |n| lepton bins are sensitive to PDFs

@ Biases in the modelling of the W
polarisation or of heavy-quark-initiated _ -,
production would produce
discrepancies between W+ and W-
determinations of m

[T TT | T 1T | T 1T | T 1T | TTT | T 1T | T 1T T 1T TTT T 1T T 1T T
- ATLAS Internal
630E s = 7 TeV, pp>W*

600#— -
550F —H
500E =
450

do/dy [pb]

@ Some of the PDF uncertainties are 400%¢¢¢& E
anticorrelated between W+ and W-, 3 " T

: : : 390F" 4 Data (W") ==

and between |n| bins. The combination  ;y,f +Dbata(w) =

. .. - g= MC Prediction =
constrains PDF uncertainties 50,05 04 0808 1 121471818 2 2254

In|
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Measurement strategy - categories

@ Average <u> - Validate recoil and leptons calibration

@ Recoll bins (u.) - Validate p_ W modelling and recoil calibration

@ Upar bins - Validate p_ W modelling

x 10 i
%) P I T O B N 7, WO = of o o e oy e e e B S S ) B v s —
£ 200=ATLAS |Internal '~ -e-Data | E £ 500FATLAS Internal -»-Data ]
®  180Efs=7TeV, 461" Ew-ev = Q “Vs=7TeV,4.11b" -
w 160 Backgrounds I W 400— Backgrounds —|
140E- = - .
120 = 300 =
100 — - -
80 = 200— -
60— 3 - =
40E 100~ —
205 - .
———————— I_.__I _____ — ———— — (_) 1_02E ______________________________________________ LN ] LR
O 1.02 =
< 1_013_ - ¥ 1.01 + ey e
_y -+ -+ -+ + + "~ 1 -+ 4 e
S ogae THHF e i T T +1t S 0994 _-H_++ o .
..t%o 098 ---------------------------------------------------------- é S 098|: ........................... crernn s R P a
a 5 : 15 i 59 oe 30 -30 20 =0 0 10 20I . \/30
u; [GeV] U [GeV]
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Measurement strategy — categories e — u

@ Status as of December 2015: 50 MeV
discrepancy between electrons and muons

s F e -
L{EOO— ggm_
Sk 30GeV < pir+ < 50GaVW v T 30GeV < plr— < 50GeWW —uv
op: - W'l ev 10k 1 & Wev
. - * 1 *
50 ; + : sof=—¢— ! , . .
$— E 2 | 1]
0———+-—-—---+ O 3 assssssagyasasssanerenanpasaesasnensnssssnsnniansnnsasneefunasd
Y - s0f
100 100
150} 150
200 200
L L l A L " o | L |
chawe 0 02 04 06 08 1 12 14 158 1.8 2 22 ||2|4 hduswe O 02 04 06 08 1 12 14 16 18 2 22 lﬁla
1
= F Yok
2 200 w 2 200 w
- 65GeV < my + < 100Gey Wy gﬁoLGSGeV < my — < 100GeV A
100 W ev 100 |— - W=ev
50 —T— 50 . I
: T & P —— 3 L
) = ‘ . S0 _
100} : A00fF
150 450
200— 200 —
| i 1 l i | | i i | 1 ]
chsve 0 02 04 08 08 1 12 14 18 18 2 22 24 hdusve 0 02 04 06 08 1 12 14 16 18 2 22 24
mi mi
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Measurement strategy — e m categories

@ Discrepancy solved by SFmiss, and phi-dependent calibration

veto requirement

Nyvc o< emc(l — emc);

@ Z-background events contribute to the W samples if one
lepton is reconstructed, and the other lepton fails the lepton

@ The number of reconstructed and selected Z-background
events in data and MC can be expressed as

Nda.ta. X Edata(]- - Edata)

@ The MC background estimation needs to be corrected for
SF = €gata/evc and for SEMiss = (1 — €qata)/(1 — enmc)

Large effect in the muon channel (30-
40 MeV), small effect in the electron
channel (~ 2 MeV) due to the larger
value of the efficiency for the muons

e With SFMiss correction (red), without SFMiss correction (blue)

Integral  2.461e+06 |

Integral _ 2.601e+06

45000
40000}—
35000}

30000}

25000

20000

15000

10000} J
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seiMuon_transM_cut_T

Entries 2593015
Mean 81.77
RMS 11.11
integral _ 2.629¢+06
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ok . Entries 2503015
e - Mean 81.61
- s AMS 1.1
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my’ [GeV]
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Physics modelling overview

@ Factorise the fully-differential DY cross section in 4 terms

do(pt,y)

do(y)\
dy

i=0

»
Breit-Wigner ; Parton ShOW

NNLO pQCD <=

] & ?TLAS Internal 4 paa | 3: :'}_J{TLﬁélnt'érna'l”'_q'._D'a{a'” E
U ” <) Vs =7TeV, pp=Z v Pythia84CTune] = L Vs=7TeV,pp>Wiz - E
S€ ancl ary E 0.06E - == Pythia8 AZ Tune] 1-22;_ 7 Pythia8 AZ Tune.
- Elo= ] 115 3
measurements to 00517 4 E ) E
. . 0.04— + = g

constrain and validate q " E - :
0034 3. E 0.8- =
the mOdeIIIng 0'025 “L;L;—‘_:_ é 0-7§p 2 distribution, 4.7 fb!, JHEP09(2014)145 —t—i
M e R el

700 S T e 0 5 10 15 20 25 30 35 40 %9020 30 40 50 60 70
~ATLAS Internal p' [GeV] p. [GeV]

650?@ - 7 TBV, pp_)Wr

dao/dy [pb]

600 S L B BN B A L B
LATLAS Internal —4 Data LATLAS Internal —¢ Data
5508 = Vs =8TeV, 20.3 0" == MC Prediction 15 = 8 TeV, 20.3 fb” B MC Prediction
- ] Lpp—Z Lpp—Z
5005— E 0.8~ 0.8~
gy E 0.6F- 3 0.6F
4001 % = ¥ ] r
c ¢¢¢ E 0.4 - 0.4F
3505 4 Data (W) == - - -
300:_+ Data (W) A 0.2~ ] 0.2~
F == IVIC Predlctlon B c ] -
250_| Ll L o by b b by by by 1| 0 :"‘.I* — T T T T ] 0—;' 0 — 0 0 —
0 0 0 4 06 08 1 121416 18 2 22 24 0 20 40 60 80 100 0 20 40 60 80 100
' P! [GeV] p! [GeV]
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Lepton calibration overview

@ General idea: use Z- Il events to calibrate lepton scale, resolution,
efficiency

@ For the lepton scale, use also E/p

@ Electron-energy and muon-momentum scales determined with 10
relative uncertainty

@ Lepton efficiencies evaluated with the tag-and-probe method

@ Phi-dependent corrections are crucial for the Z to W extrapolation

; 500 [rrri1 LN | T T | O | [T F T T ; 200 B LR L LN LR B T
g ATLAS Internal g ATLAS Internal
E4UD = }150_ W= ev 7
&-p
= 0 < 100 .
100 H + g% # # : T #
0 | '
' . -50 —
- - B ' #
-100 n ax
» —— -100 -
200 W— ev T SR .
"p e -150- .
-300 _li me e T P ..i ....... | ; I I I ] | I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 o Ll Ll 'l Ll 1l 1 Ll L 1 Ll L Ll Ll Ll Ll
5 2 A 0 1 2 3 20032 0 1 2 3
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Recoll calibration overview

@ <u> In the MC is corrected to match SumE_ and u_ distributions in
data

@ Recoll corrections derived as a function of p_and (SumE_ - u_), and
applied with a Smirnov transform

x10°
100FATLAS Internal e pata ‘ = 25 TLAS Internal ' Data ‘
270000

@ Phi-dependent corrections & e’ Sfmemen| 00l e
are applied by projecting : |
the recoil on the x and y
axes and correcting the

QEJ 1.05

average values in the MC 5 | i
. IE, -u [GeV] ) ’ 1 ¢(3T) [rad]J
@ Scale and resolution \ —v

Data/MC
¢
]
!
r
!
¢

x10° x10°

- - E :‘AfL'As"I"tI""\I‘“‘\""I“"\""\"“I““: ) :A‘T_LL‘“'""I“"\““\""I""I““\““\"‘;
corrections are derived by § = 25200 o § 120 ATHAS IOMEL < e
. D qgo- [ Z- py (after correctlons); I.Ii 100: Z—pp (after corrections) :
comparing upar and uperp E: *

In data and MC E

- 40~

= 201
Q sk H LT - omesacas

% ;ZZZ?'.QM syssstersrrate S t % 1'0513”4-'1‘;“"“*‘ i *t-'tf'iﬁwiﬁ.
e _5:0 ~40 80 -20 -0 0 10 20 80 40 50 g 0.95520 —40 -30 -20 -0 0 10 20 Sb 40 5:0
U +P; [GeV]

u [GeV]

Stefano Camarda 26



Compatiblility of categories

80300

80200

80100

P, Fits (Electron)
my Fits (Electron)

p,. Fits (Muon)
my Fits (Muon)

Comb. Fits (W")
Comb. Fits (W)

—80700
: Ap_ (W) [JStat. Unc. >
- ATLAS Internal T, toaume | 2
—Vs=7TeV,4.1-46f" A my(W) [Stat. Unc. —=80600
- | | ¥ m (W) ~—Total Unc. =
- | | — Comb Fit []Total Unc.
= ; ; ; 80500
+ * + * | + + | j +_+_+_ - 80400
- | + + | | 80300
— | | | 80200
- W*> ev CHannel (Assurhed MC Mass Measured)
_IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII 80100

0.0<n<08 0.8<n<14 2.0<n<24

Fit Categories

= ! ° e m,, (Partial Comb.)
— A TLAS Internat =1 Stat. Uncertainty
= \s=7TeV,4.1-4.6 " B — Full Uncertainty
e __T-Ie8 ¢  ____ — my, (Full Comb.) _
= _ o— Stat. Uncertainty
= Full Uncertainty
:— _+_
Rt
- ®

= N

— e

E T T T T T T T T —== o—— T TT T
= @
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80300 80320 80340 80360 80380 80400 80420 80440 80460 80480 80500

my, [MeV]
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A p_(W") [JStat. Unc.
ATLAS Internal ot Do
Vs=7TeV,4.1-46fb" Am W) [Stat. Unc.
¥ m (W) —Total Unc.

— Comb Fit []Total Unc.

U

™

A h 4

+

- Wi 1w Channel (Assumed MC Mass Measured)

0.0< r]u-cO.G 0.6< r]u-c‘l 2 1.2< r]uc‘l 8 1.8< r]u<2.4
Fit Categories

@ All categories give

consistent extractions of
mW

@ _, Strong validation of

physics modelling and
detector calibration
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Value | Stat. Muon Elec. Recoil Back- QCD EWK PDF's Total | y*/ndf
[MeV] | Unc. Calib. Calib. Calib. grd. Unc. | of Comb.

Combined-Fit (W*) | -98 |[[71][70 62 29 39][105 53 69| 186 | 28.1/27

Additional|3.5 MeV|from
the envelope of CT10,
MMHT, CT14 PDF sets

m = 80xxx = 19.0 MeV

m, =80xxx t 7.1 (stat) £ 10.5 (exp.syst.) £ 14.1 (model.syst.) MeV

The dominant uncertainty is due to the physics modelling
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Comparison of uncertainties with CDF

Better stat, worse recoill, similar PDF and p_ W

mr fit uncertainties p,% fit uncertainties
Source W — uv W — ev Common Source W — uv W — ev Common
Lepton energy scale 7 10 5 Lepton energy scale 7 10 5
Lepton energy resolution 1 4 0 Lepton energy resolution 1 4 0
Lepton efficiency 0 0 0 Lepton efficiency 1 2 0
Lepton tower removal 2 3 2 Lepton tower removal 0 0 0
Recoil scale 5 5 5 Recoil scale 6 6 6
Recoil resolution 7 7 7 Recoil resolution 5 5 5
Backgrounds 3 4 0 Backgrounds 5 3 0
PDFs 10 10 10 PDFs 9 9 9
W boson pr 3 3 3 W boson pr 9 9 9
Photon radiation 4 4 4 Photon radiation 4 4 4
Statistical 16 19 0 Statistical 18 21 0
Total 23 26 15 Total 25 28 16
Combination Value | Stat. Muon Elec. Recoil Back- QCD EWK PDF’s Total | x°/ndf
of ‘ [MeV] | Unc. Calib. Calib. Calib. grd. Unc. | of Comb.
pr-Fit (el) -34.3 11.0 0 17.5 1.5 4.1 10.6 5.3 6.2 25.0 3.0/5
my-Fit (el) ‘ -16.4 ‘ 13.5 0 15.9 12.4 12.3 9.5 34 10.3 30.8 7.9/5
pr-Fit (1) 19 | 112 104 0 13 35 107 60 75 213 | 8977
mo-Fit (1) ‘ 0.4 ‘ 130 116 0 123 58 96 34 103 264 | 2.6/7

Stefano Camarda 29



Comparison of uncertainties with DO

Source Section mr P B,
Experimental
Electron Energy Scale VITC4 16 17 16
Electron Energy Resolution VIO D 2 2 3
Electron Shower Model Na 4 6 7
Electron Energy Loss 4 4 4
Recoil Model VIID 3 5 6 14
Electron Efficiencies VITB 10 1 3 D
Backgrounds [VTIII] 2 2 2
> (Experimental) 18 20 24
W Production and Decay Model
PDF \ure 11 11 14
QED V1D 7 7 9
Boson pr VTA] 2 5 2
> (Model) 13 14 17
Systematic Uncertainty (Experimental and Model) 22 24 29
W Boson Statistics xi 13 14 15
Total Uncertainty 26 28 33
Combination Value | Stat. Muon Elec. Recoil Back- QCD EWK PDF’s Total | x°/ndf
of [MeV] | Unc. Calib. Calib. Calib. grd. Unc. | of Comb.
pr-Fit (el) -34.3 11.0 0 17.5 1.5 4.1 10.6 5.3 6.2 25.0 3.0/5
my-Fit (el) -164 13.5 0 15.9 12.4 12.3 9.5 34 10.3 30.8 7.9/5
pr-Fit (1) ‘ 1.9 ‘ 11.2 10.4 0 1.3 3.5 10.7 6.0 7.5 21.3 8.9/7
myp-Fit (u) 0.4 13.0 11.6 0 12.3 5.8 9.6 34 10.3 26.4 2.6/7
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Measurement of the W-boson mass - Detalls

@ Physics modelling

@ Recoill calibration

@ Lepton calibration

@ Z-boson mass cross checks
@ Background subtraction

@ Combination
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Physics modelling
do(m) do(pr,y) (do () ‘
dpl dpz m)‘ (1+cos®6) + ; A; (pr, )’)R‘(@

Parton Shower
Breit- ngner NNLO 5OCD - /

PDF

QCD

~
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Physics modelling — electroweak corrections

@ QED FSR: dominant correction, included in the MC with PHOTOS,
uncertainty from comparison with YFS

@ Running widths (and running of o for Z) included in the BW
parametrisation

@ NLO electroweak: pure weak corrections and ISR-FSR
Interference, estimated with WINHAC. QCD ISR included to predict
a realistic ptW distribution

@ FSR lepton pair production y* - Il : formally higher order (NNLO),
but significant correction. Estimated and added as uncertainty

Kinematic distribution Py my. Py Py ;.
dmwy [MeV]
FSR (real) <01 <01 <01 <01 <0.l
FSR (pair production) 3.6 08 <0.1 44 0.8
Pure weak and IFI corrections 3.3 2.5 0.6 3.5 2.5
Total [MeV] 4.9 2.6 0.6 5.6 2.6
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Physics modelling — electroweak corrections
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Physics modelling — pT W

@ Pythia8 tuned to the pT Z e e
measurement at 7 TeV

| —— PYTHIA8 4C

i PYTHIA8 AZ

Prediction/Data

I—— —
PYTHIAS
Tune Name A7 0.9

|IIII|IIII

Primordial kp [GeV] 1.71 4+ 0.03

Inclusively and in rapidity bins

ISR oS8 (my) 0.1237 = 0.0002 08F 1o 7Tev: [ Lot 471" |

ISR cut-off [GeV] 0.59 4 0.08 R ErSEE

Z[GeV

X/ dof 15.4/32 S

£ “ATLAS Internal =~ eDaa

L 250+5=7TeV,4.1 1" EW- v

L = Backgrounds =

@ The Pythia8 AZ tune describe i E

the pT Z data within 2% = E

100— —

@ Pythia8 is used to predict the
evaluate uncertainties on pT W
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Physics modelling — pT W

Only HerW|g Pythla and Powheg predlct a monotonic falling W/Z pt ratio
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Physics modelling — rapidity and Al

@ Rapidity and angular coefficients are modelled with fixed order
perturbative QCD at NNLO

@ A fast prediction was developed, based on DYNNLO, which allows
to evaluated correlated PDF uncertainties
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- .- g ] 500E- =
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Heavy flavour and scale decorrelation

@ Heavy-flavour-initiated production is a significant source of
uncertainty, and introduce decorrelation between Z and W
production. HF production has a harder boson pT spectrum

@cc—Zand bb- Z are 6% and 3% of Z production, cs - W is ~20%
of W production

E 1_15"”"”1"“!”""”I""I”"I"”I""' Ll

. = - [ Light .

@ Uncertainty addressed o 4z ~ JeezZ =
with charm mass i - [ |bbZ .
variations, and by 1-05F = E
decorrelating muf iE 5
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processes UeoE E
0.9 : L. -
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Physics modelling — QCD uncertainties

Kinematic distribution ps me’ P mb

T T
Omwy [MeV]

PDF uncertainty (W™) 14.2 14.1 15.8 16.0
PDF uncertainty (W) 12.7 13.8 15.0 14.7
AZ tune (+5-7) (+1.5-2) (+5-7) (+1.5-2)
Parton shower ug with | 0.3 70 0.3 70
heavy-flavour decorrelation

Charm-quark mass 2.5 0.8 2.5 0.8
Parton shower PDF uncertainty (W*)  +7.5 +1.9 +7.5 +1.9
Parton shower PDF uncertainty (W™) -5.1 -1.3 5.1 -1.3
Angular coeflicients 6.4 54 6.4 5.4
Total (W™) [MeV] 20.1 16.9 22.0 18.5
Total (W™) [MeV] 19.1 16.6 20.7 17.3
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Recoll calibration — <u> scaling

@ <u> Is scaled by a factor a = 1.10+0.04-0.03
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Resolution [GeV]

<up+p, > [GeV]

Data-MC [GeV]

Recoll calibration
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Recoll calibration

@ pT dependence of the correction calibrated on Z data, and
propagate to W with a pT-inclusive scaling

data(ZET’ pr) = hg,, (ZET, Pr)( v

(ZET)

Mc(ZET)

(ZET))

/ data
h%e(ZEr)

@ Recoll corrections evaluated as a function of <u>

|| range W+ W~ W+
Kinematic distribution p;’f mt p% mr pf, mr
dmy [MeV]
u scale factor 02 10 02 10 02 1.0
¥ Et correction 1.1 126 12 90 12 114
Effective corrections (stat.) 20 27 20 27 20 2.7
Effective corrections (Z — Wextrap.) 0.1 58 0.1 43 0.1 5.1
Total 23 141 23 104 23 128
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Muon calibration

1 +an, ¢)
corr MC MC
Pr =Pp X 1+ Beurv(n7) - G(O, 1) - Pt
1+q-5(n,¢)-p¥1‘3[ I ]
@ o radial bias @ Charge dependent corrections
@ J: sagitta bias @ Corrections derived form Z - uu

. . line shape, and from E/pin W - ev
@ 3: resolution correction

In¢| range 0.0< |nf] <0.8 0.8< |pf| <14 14<|nf] <2.0 2.0<|nf| <24 Inclusive
Kinematic distribution pr mr pf; mr p{i mr pff mr pf; mr
dmy [MeV]
Momentum scale 9.0 9.0 14.4 14.5 27.5 27.6 114.0 1140 86 8.6
Momentum resolution 1.4 1.4 1.0 1.0 1.1 1.1 1.7 1.7 1.0 1.0
Curvature bias 1.0 1.2 2.8 2.8 3.8 1.7 4.8 10.5 1.8 1.8

Reconstruction and 40 36 5.1 37 48 35 64 Y 55 43 36
isolation efficiencies

Trigger efficiency 5.6 50 7.1 5.0 11.8 9.1 12.1 9.9 6.2 49
Total 11.5 11.0 17.1 16.1 30.6 293 1149 1150 11.6 10.7

Stefano Camarda 43



Electron calibration

. . [73] L s g e P, B B L L L L) LB B -
@ Corrections derived form Z — ee  § g0 ATLAS Internal o 4
. 2 Vs =7TeV, 4.6 fb’ WZ- ee E
line shape, and from E/p ™ 25000 Backgrounds =
. . 20000 —E
@ Energy scale determined with 5000 -
-4 . . _E
10 relative uncertainty 10000 :
5000 =
O ' ' ' 3
S AOBIT g L =
T 0.95F e o A i
= 80 82 84 86 88 90 92 94 96 98 100
Mee [GeV]
In¢l range 0.0< |pf| <0.6 0.6<|pf] <1.2 1.82<|n’| <2.4 Inclusive
Kinematic distribution pg mr p,f mr p,‘? mr p,f, mr
Smy [MeV]
Energy scale 10.3 10.3 10.9 10.9 16.0 16.0 8.0 8.0
Energy resolution 3.9 39 7.0 7.0 16.0 16.0 3.1 3.1
Energy linearity 4.9 54 74 7.2 4.6 5.1 42 45
Energy tails 2.3 33 23 33 2.3 3.3 23 33
Reconstruction efficiency 8.5 7.4 92 7.8 12.4 10.6 6.8 6.0
Identification efliciency 9.2 7.8 10.6 8.5 12.2 11"3 6.7 5.7
Trigger and isolation efficiencies (.2 0.5 0.3 0.5 2.0 2.2 0.8 09
Total 17.5 16.6 206 19.1  29.1 28.2 13.7 132
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Z cross checks

* Fi = e m, (Fit)
p Fits (Electron) = ATLAS Internal o S Siat, Uncertainty
= Vs=7TeV,4.1-461b" — m, (LEP Comb.)
pTi Fits (Muon) E_ ° Full Uncertainty
pZ Fits (Combined) = -
m7 Fits (Electron) ®
my Fits (Muon)

mg Fits (Combined)

AR R S S SN SN SR ST T [ SR S SN NN U S SR TR R T SR SN R T S S "
91120 91140 91160 91180 91200 91220 91240

Distribution p%* p%‘ p? m?’ m%‘ m%i
omyz [MeV]

Electron 13+31+10 -20+31+10 -3+21+10 -93+38+15 4+38+15 45+ 27 + 15
Muon 1 +22 +8 -36+22+8 —-17+14+8 -35+28+13 —-1+27+13 —-18+19+13

Combined 5+418+6 -31+18+6 —-12+12+6 —-58+23+12 1+224+12 -29+16+12

@ mZ measured at LEP is an input for the lepton calibration

@ The mZ fits provides a closure test of the lepton calibration, and a
validation of the physics modelling and recoll calibration
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Background
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@ The multijet background is determined with template fits, and by
extrapolation of the lepton isolation to the signal region

@ Both normalisation and shape are extrapolated

@ Novel technique now adopted by other analyses
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Background

Channel Wt—oetv W Deyv Wiosu'y Wh—ouvy
Smw [MeV]
W — tv (fraction) 2.2 2.2 2.2 2.2
Z — ee (fraction) 0.5 0.5 — —
7Z — upu(fraction) — — 2.0 2.0
7 — 17 (fraction) 0.5 0.5 0.5 0.5
WW, WZ, ZZ (fraction and shape) 0.2 0.2 0.2 0.2
Top (fraction and shape) 0.3 0.3 0.3 0.3
Multijet (fraction) 3.3 4.1 2.3 3.1
Multijet (shape) 5.6 7.3 2.1 2.8
Total
Channel WHoetyv W sev Wou'y Wi uy
omwy [MeV]
W — tv (fraction) 2.2 2.2 2.2 2.2
Z — ee (fraction) 0.5 0.5 — —
Z — uu(fraction) — — 2.0 2.0
Z — 77 (fraction) 0.5 0.5 0.5 0.5
WW,WZ, ZZ (fraction+shape) 0.2 0.2 0.2 0.2
Top (fraction+shape) 0.3 0.3 S 0.3
Multijet (fraction) 8.2 8.7 3.6 4.7
Multijet (shape) 8.0 11.4 2.5 3.5
Total
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@ The combination is performed with BLUE, and cross
checked with HERAverager

e Statistical correlation between p_ lepton and m_are
evaluated with the Boostrap method

Combination Value | Stat. Muon Elec. Recoil Back- QCD EWK PDF’s Total | x*/ndf
of [MeV] | Unc. Calib. Calib. Calib. grd. Unc. | of Comb.
my-Fit (W) -10.7 12.3 8.6 7.2 13.8 8.8 9.4 34 16.5 30.3 2.0/6
myp-Fit (W™) -0.3 13.9 9.0 7.1 11.1 8.7 9.7 34 15.8 29.7 6.7/6
my-Fit (W*) -5.0 9.7 8.0 5.8 12.2 7.8 9.6 3.4 9.4 24.4 11.3/13
pr-Fit (W) 0.3 11.6 7.3 8.1 1.3 3.6 10.4 5.7 11.0 23.0 9.7/6
pr-Fit (W™) -234 | 10.5 7.0 8.3 1.3 3.7 10.7 5.7 11.8 23.0 4.7/6
pr-Fit (W#) -9.9 8.1 6.7 6.7 1.3 3.5 10.6 5.8 6.5 18.9 17.3/13
pr-Fit (el) -34.3 11.0 0 17.5 1.5 4.1 10.6 5.3 0.2 25.0 3.0/5
my-Fit (el) -164 | 13.5 0 15.9 12.4 12.3 9.5 34 10.3 30.8 7.9/5
pr-Fit (1) 1.9 11.2 104 0 1.3 3.5 10.7 6.0 7.5 21.3 8.9/7
my-Fit () 0.4 13.0 11.6 0 12.3 5.8 9.6 34 10.3 26.4 2.6/7
Combined-Fit (W*) | -239 9.6 7.1 7.8 2.8 4.3 10.6 5.4 12.1 22.8 6.3/13
Combined-Fit (W) 0.6 10.2 7.6 7.8 2.8 4.3 10.3 5.3 11.3 22.6 15.2/13
Combined-Fit (W) -9.8 7.1 7.0 6.2 2.9 3.9 10.5 5.3 6.9 18.6 28.1/27
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Fitting range stability and cross checks

35< p, < 45 GeV
32< p, < 48 GeV
30 < p, < 50 GeV
30 <p, <45 GeV
30 < p, < 46 GeV
30< p, < 49 GeV
30< p, < 50 GeV
31<p_ <50 GeV
32<p, <50 GeV
34 < P, < 50 GeV

35< P, < 50 GeV

“ATLAS Internal . O7<mr<98CeV EATLAS Intemnal o
“(s=7TeV,4.1-46 b ugl 20 <My <96.GeY “(s=7TeV,4.1-46 " e
- —o— 70 <m; <95 GeV - °
- ENominal m fitrange =~ g |  8<m<9%GeV -Nominalp fitrange -
- —— 65<m, <94GeV [ ®
= —o— 65<m, <97GeV [ °
;_ —— 65<mT<100GeV;_ o
SRS o< <3Gy % AR TR
- — Full Uncor. Uncertainty —=l=— 70<m; <93GeV [ — Full Uncor. Uncertainty L
- Comn) - mem <orov | DuTCr) ‘
g .FU." %Jnlcelrtalintly L —To— L 70 <m; < 100 GeV g .FU." %Jnlcelrtalintly L L L
=80 =60 =40 =20 0 20 40 =80 60 =40 20 or 20 40
5m,, [MeV] 5m,, [MeV]
Measurement Category W — ev W — ev W — uv W — uv
p;‘?—Fit mr-Fit p;‘fr—Fit mr-Fit
Amy [MeV] Amy [MeV] | Amy [MeV] Amy [MeV]
< u>in [2.5,6.5] 8+ 11 14 +12 -21+9 0x11
< p>in [6.5,9.5] -6+ 11 6+19 12 +13 -8+ 18
< pu>in[9.5, 16] -1+13 3+22 25+ 14 35+23
0 < pr(W) < 15 GeV 0+3 -8+3 5+6 8+5
15 < pr(W) < 30 GeV 10+ 12 0+20 —4+11 » -18+18
up <0 Gev 8+ 11 20+ 11 3+10 -1+11
u >0 GevV —-9+5 1£5 -12+6 10+ 6

@ Compatible within statistical uncertainty
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@ The indirect determination of m  from the global fit of the SM

parameters has an uncertainty of 8 MeV which sets a natural target
for the precision of the measurement of m

@ We have achieved an uncertainty of 19 MeV on m  which equal the
uncertainty of the current best measurement by CDF

@ The measurement relies on a thourough detector calibration, and
on innovative strategy for the physics modelling, which combines
theory predictions and fits and validation to experimental data

@ Theoretical uncertainties, in particular PDF and pT W uncertainties,
are the dominant uncertainties for the W mass
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Prospects on physics modelling

@ PDF uncertainties can be reduced by the inclusion of our precise
W, Z inclusive rapidity measurement with 2011 data

@ pT W uncertainties can be reduced by using higher-order
predictions based on analytical resummation, and with fits to Z pT 8
TeV measurement, which is more precise than the 7 TeV
measurement, and has low- and high-mass distributions which can
constrain heavy-flavour-initiated production

@ Much work was already done on the two points above, and there
are plans to update the 7 TeV measurement with updated physics
modelling

@ Thanks to the precise measurement at 8 TeV, uncertainties on the
angular coefficients are currently not a limiting factor. In the future
they can be reduced with more precise predictions and more
precise measurements.
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Prospects on 8 and 13 TeV

@ Larger data samples allow (in principle) more precise calibration,
provided material, alignment, geometry, etc... are all well
understood.

@ However, larger data samples come with higher pile-up, which
deteriorates recoil resolution. This could compromise the mT
measurement, and reduce our ability to control and validate
modelling uncertainties through uT and upar distributions.

@ In order to benefit from the larger 8 and 13 TeV data samples, it is
crucial to improve the methodology used for the recoil calibration.

@ For the vaidation and constraint of the physics modelling, we need
to perform precise measurements of W pT, either with low pile-up
runs, or with new methodologies.
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Recoll calibration
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@ The recoll resolution rapidly deteriorates
with increasing pile-up conditions
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Control plots
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Control plots

i PR
8 ATLAS Intemal ~  eDam 8 TLAS Internal T wbatd
= fs=7TeV, 46" Bw- e = s=7TeV.4.6fb" @w- ev
L T Backgrounds
P . P . B . 1 i i i i i 1 .
T LI T T T T T T TrTrrr Trrrrr T T T T T T T T lla
b i ———— e B R PR
— i+ + T - 1 s LA e
E D99 B - 4 — Lﬂ ﬂ_g.g+ ........................................... + ..... e _|_
[} -~ o 0 —4
D ﬂ.%t" 1 | | 1 ) | | N ) = | D G.Q'Bt 1 | | 1 ) | | ) ) =
-2 <45 - K05 0 05 1 15 2 2 -5 -1 05 0 05 1 17 2
ne* e
3 3
= s =7 TeV, 41 b’ = fs=7TeV,4.1fb"
Ll LLl
U 1_GEEI T T T T Trqrrr T T T LI ll; U
= 101 ‘I‘ .............................................. =
E 'D.'Q’Q'_]_ = o e e | E
E G-Q'E'E i i i i i i i i i = | ':Du
25 2 45 14 05 0 05 1 15 2 25




v table — muon

Distribution  Category Stat.  Stat+Syst (diag.) Full ngof  Full (opt.)  nger (Opt.)

p# Inclusive, W 36.3 16.2 21.9 39 14.4 21
Inclusive, W™ 29.8 16.8 28.8 39 14.2 21
0<|n| <08, W 44.0 32.1 354 39 25.0 21
0<|n| <08, W~ 41.4 31.0 38.7 39 19.5 21
08<|n| <14 W 29.8 23.5 27.6 39 17.4 21
08<|n|<14,W" 24.4 194 23.5 39 16.2 21
l4<n|<2.0,W* 36.0 26.9 25.7 39 17.2 21
l4<|n<2.0,W- 34.2 28.0 32.0 39 20.6 21
20<|n| <24, WT 40.5 27.8 334 39 23.5 21
20<n| <24, W 44.1 30.3 42.1 39 19.8 21

my Inclusive, W 76.5 62.1 71.6 79 57.8 65
Inclusive, W™ 71.2 61.1 68.2 79 62.7 65
0<|n| <08, Wt 80.5 78.5 84.6 79 58.1 65
0<|nl <08 W~ 75.3 71.0 74.7 79 * 571 65
08<|n| <14, W 70.2 64.6 68.0 79 61.3 65
08<|n|<14,W~ 106.1 101.3 1054 79 87.8 65
14 <|n|<20,Wt 61.4 56.0 58.4 79 46.3 65
l4<|n|<2.0,W- 74.1 70.5 73.3 79 64.0 65
20<|n| <24, WH 76.1 61.3 71.4 79 49.6 65
20<|n| <24, W™ 71.0 63.8 69.2 79 60.8 65
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v* table — electron

Distribution  Category Stat.  Stat+Syst (diag.) Full nges Full (opt.) nger (Opt.)

P Inclusive, W™ 74.4 39.5 306 39 26.9 21
Inclusive, W™~ 41.0 25.6 31.7 39 20.2 21
0<n|<0.6,W" 58.6 43.1 47.1 39 32.3 21
0<|n|<0.6, W~ 38.4 28.3 320 39 20.2 21
06<|n| <12, W" 388 28.2 302 39 19.9 21
06<n<12,W~ 403 31.9 20.1 39 19.8 21
1.8 < |n| <24, W™ 60.7 36.6 316 39 17.2 21
1.8<n| <24, W= 49.1 36.9 395 39 28.5 21

mr Inclusive, W 72.2 62.4 695 79 53.8 65
Inclusive, W~ 78.5 70.4 77.1 79 55.7 65
0<|n|<0.6,W+ 95.6 89.6 937 79 76.4 65
0<|n|<0.6,W~ 69.9 65.7 662 79 44.8 65
06<|n|<12,W" 609 56.3 589 79 50.8 . 65
06<|n<12,W 87.1 82.3 80.3 79 58.9 65
1.8<|n| <24, W" 84.6 73.9 80.8 79 71.7 65
1.8<n|<24, W= 903 83.5 87.1 79 66.1 65
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Post fit plots
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Post fit plots
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Methodology for the W mass extraction

@ Event selection: W leptonic decay
Wolv,l=eu
@ The full kinematic of the W decay cannot be
reconstructed, since the longitudinal
momentum of the neutrino is unknown

The analysis is based on a template fit extraction
from observables sensitive to M

Lepton transverse momentum [

W transverse mass

My = \/2 - phpY - (1 — cos Ag(l,v)

Neutrino transverse momentum
pf_yr (Not used)

(from hadronic recoil)

* A key ingredient of the W mass measurement is to use Z - |l
events to constraint both experimental and theory systematics
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Theoretical uncertainties

List of theoretical uncertainties:

1% generation quarks (u,d) PDF
2" generation quarks (charm,strange)

3" generation quarks (bottom)

Higher order corrections to the W boson polarisation QCD
Soft-gluon resummation

Non-perturbative Sudakov form factor (or primordial kT)

Higher order EW corrections

QED ISR and FSR EW
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PDF uncertainties for the W mass

@ Sea quarks composition of protons is
charge symmetric

~ same amount of q_and g_from sea

@ Valence quarks determines a charge
asymmetry in the proton:

u=u +u u=u What is the effect of this valence
d=d +d d=d asymmetry for Charged Current
vl Drell-Yan (W-boson) production?
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PDF uncertainties for the W mass

@ [n proton-antiproton collision PR
o §0_04 L (a) W rapidity
@ Asymmetry of the W rapidity = oo midiis
_ S 3 ---- ¢ pseudorapidity
@ Same cross section for W+ and W- 009
*5 L
“0.02F

@ VValence-dominated production

@ VVery small ambiguity for the incoming parton: mf_
guark from proton, antiquark from antiproton

oroton antiproton "3 -2 -1 0 12 4
i’ UV ki‘
: /\‘ Negligible
| a R G < "u
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PDF uncertainties for the W mass

@ [n proton-proton collision

@ Different cross section for W+ and W-

| T T T T | T T T T
6.5~ ATLAS Internal O —
- 68% CL ellipse area _

ol - BR(W'— I'v) [nb]

@ Large ambiguity in the direction of the e:— -
Incoming quark ©
S5l Jramum' fiaecsw

e S
proton proton 35 4 45

Gl . BR(W = V) [nb]

Stefano Camarda 68



PDF uncertainties for the W mass

@ What is the consequence of the ambiguity
In the direction of the incoming quark?

ow+(y) o< u(xt) - d(x) +d(x1) - u(x)
ow-(y) o< d(x1) - U(x2) + b(x1) - d(x2)

@ The helicity is the projection of the spin on
the momentum axis

@ The W is a spin 1 particle, with 3 p033|ble
helicity states: A = +1,0,-1

@ Ambiguity in the average d ;

helicity of the W
(polarisation)

PDF uncertainty — polarisation uncertainty

Stefano Camarda
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W polarisation

4 —

3.5F 3

, 3t =

WRF - ]

2.5F 3

A =0 f B .
------------------------- lab 2: _;
) 1.5 .

r[WRF E

- II|III|III|III|III|III|III|II
01 -0.8-0.6-0.4-0.2 0 0.204 06 0.8 1

(WRF) *
cos(0)

@ The 3 helicity states have very different
decay polar angles

@ The average polarisation heavily affects
the lepton kinematic
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W polarisation

> L pp = W' (s =7 TeV > Al pp =W, (s=7TeV
¢ 10 ¢ 10
2 C 2
s f &
_n-l— B _ﬂ.l-
z i 2
S S
; 102 - 102
L . L
T B —— Spin correlations - - —— Spin correlations
- ----- No spin correlations e No spin correlations
a __I..I P T R S T I TR T SR T 'E __I....I....I....I....I
= 1.{}[}5E = 1.005¢ 7
o 1 o 1 :
0.995F | | | | 0.995F | | | |
30 35 40 45 50 30 35 40 45 50
p!r [GeV/c] p'T [GeV/c]

@ \We can artificially remove the ambiguity in
the W helicity by removing spin
correlations — Unpolarised W

@ Dramatic effect on PDF uncertainties of
lepton p_ distribution
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Propagate PDF uncertainties to W mass

800F
6001
4001

200]

2001

oW
oW ....- 80385.1 £ 5.8
s W

R .
BT fua?
S

G

- 80385.2 £ 5.0

Tand W .-..- 80385.2 + 3.8

PRI NI RN S NN SR R S SN AT S N T N TR S SR
80300 80350 80400 80450 80500
M,, [MeV]

@ Template fit of lepton p_

@ Fit the * profile with a parabolic

function to find minimum and
sigma at Ay* =1

@ Extract the minimum for each
hessian or MC-replica PDF
variation

@ Calculate PDF uncertainty from
the difference between the
minimum for the central PDF and
each PDF variation
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W polarisation

E i E 80405;—
Eamnn:— 580400;—
! 80395}
803905 80390;— !
80380 80383 i
- 80380 | -
80370} 80375} : =
L—W* No spin correlations 80384.8 +3.1 -SD 303705_—»-{ No spin correlations 30334.'15;;5.5 -5.5
30360:---“** .= 1 symmetric  80386.2 +3.1 -3.3 W A = +1 symmetric  80386.4 +6.8 -6.1
:---W* Spin correlations 80385 +17 -21 80365} W Spin correlations 80385 +28 -27
Lo L bbbl SENEREEEE NN AN NN NN
T e e & g m e r e & 8§
PDF member PDF member

@ This effect accounts for 20 (30) MeV
uncertainty to the W mass extracted from
W+ (W-) lepton p_
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The effect of the charm mass

@ A charm in the initial state must
have come from a gluon
splitting above the charm mass

@ Additional recoll of about 1 GeV,
harder p_ spectrum

Q> > 1.4> GeV?

S 10'EpPp > W' Vs = 7 TeV S 107EPP - Wi Vs =7 TeV
o Q -
é E o S, F e
'gn,-_ I;Q_I—
k) ©
5 10?2 5
© ©
10°¢
=] 3 A=)
E 1%_ ........................ E
0.8F
0.6 . . .
0 20 40

@ The uncertainty on the strange PDF
translates into an uncertainty on the
charm-initiated W production
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The effect of the charm mass

S S
= 80394 = I
& 80392 530395?
803901 [
- 80390
80388 i
80386} I
F 80385
80384 i
303325— 30330:—
80380 : -
80378F W' Vs 80384.8 +3.1 -3.0 WV, 80384 5 +5.6 5.5
W Vg and Ve, 80384.9 +8.4 -6.9 80375--W V4 and V,, 80384.6 +11.6 -9.5
803760 Lt <EEEENEEEEEEEEE NN NENNNENEEE
- © - © N ©0 - © = © ¥ ©
- ol - o
PDF member PDF member

The uncertainty on the strange PDF
accounts for 7-9 MeV on the W mass
extracted from the lepton p_
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Prospects for M_at ILC and TLEP

. g 20 T T T T T ]
M, can be measured at e*e” colliders through - 2 e
. = }
an energy scan of the WW production threshold °
Near threshold, the WW cross sectionis ——  ~a. " ) :
proportional to the non-relativistic W velocity | / W |
o(WW) «x Bw Ve
arXiv:1306.6352 % 10 200
ILC Glga_z program PhysRept 532 (2013) 119-244 ps (GeV)
- Energy scan 160t0 170 GeV — A 4 [ [Csimuated data
2 OM_ = 6-7 MeV l (4 ;. g
e T 80.31GeV 1
JHEP 1401 (2014) 164 + " e
TLEP OkuW program + .................. ;
2 3M_ = 0.5 MeV ! 80,39 ey '
-~ dominated by statistical uncertainty . 204760 - 3
Dominant theory uncertainties N
* |nitial state QED corrections i T

@ Parametrization of cross section near threshold

Centre-of-mass Energy (GeV)

LC PHSM-2001-009
Physics at LHC and beyond Stefano Camarda 76


http://arxiv.org/abs/arXiv:1306.6352
http://www-flc.desy.de/lcnotes/notes/LC-PHSM-2001-009.ps.gz
http://arxiv.org/abs/arXiv:1308.6176
http://arxiv.org/abs/arXiv:1302.3415
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