

Long-lived particle searches by ATLAS and CMS

Daniel Teyssier (III Phys. Inst. A, RWTH Aachen) on behalf of the ATLAS and CMS collaborations

SPONSORED BY THE

Federal Ministry of Education and Research

- Theoretical motivations:
- No new physics beyond Standard Model (SM) observed looking for promptly decaying new particles
- Several scenarios predict new long-lived particle (LLP) production : R-parity violating supersymmetry, split SUSY, anomaly mediated supersymmetry breaking model or also hidden valley models
- A wider parameter space of physics beyond the Standard Model could be probed

Physics Institute III

• New experimental signatures:

- Long lifetimes: starting from picoseconds ... up to days or even more
- Anomalous loss of energy (dE/dx)
- Time of flight in the muon system
- (...)

Displaced vertices

- Search for displaced vertices in CMS (CMS-EXO-17-018 ; CERN-EP-2018-203):
- Predicted in many BSM scenarios
- In the case of RPV SUSY, long-lived particles will be neutralinos, gluinos (I) or top squarks (r)

- Experimental signature : two displaced vertices shifted from beam axis (SM background : single vertex and near beam axis)
- d_{vv}: distance between vertices in the orthogonal plane to the beam axis for simulated multijet signals

Physics

Displaced vertices

- Background template is constructed using control sample
- Systematics uncertainties mainly coming from vertex reconstruction (in overall 24% on signal efficiency)

- Observed and expected 95% CL upper limits on $\sigma\beta^2$ for a fixed ct value of 1.0 mm, for multijet signal
- σβ² ~0.3 fb excluded for masses between
 800 and 2600 GeV and mean proper decay
 lengths between 1 and 40 mm

Similar analysis performed in ATLAS: *Phys. Rev. D* 97 (2018) 052012

Displaced leptons

- Search for displaced leptons in CMS (CMS-PAS-EXO-16-022):
- A search for displaced leptons in the e-mu channel was performed in CMS using first 13 TeV data
- The typical signature results in a transverse impact parameter in the range 100 μ m up to 10cm
- For instance in displaced SUSY model, including R-parity violating terms, gives an LSP that can decay into SM particles: pair of top squarks production

Physics

- Dedicated trigger to target displaced e-µ pairs
- For a lifetime hypothesis of 2cm/c, top squarks excluded up to 870 GeV

Displaced leptons

- Search for displaced muon vertices in ATLAS (<u>arXiv:1808.03057</u>):
- The ATLAS muon spectrometer allows the search for muon displaced vertices in a large volume, few cm up to few m from the interacting point, corresponding to LLP masses between 20 GeV and 1100 GeV
- Several BSM scenarios can produce such displaced muon vertices, general gauge-mediated supersymmetry (left) as well as dark-sector gauge boson model (weakly interacting with SM matter via coupling to the Higgs field, right):

Background contributions (cosmic muons, fake muons or pion/kaon decays) estimated using control regions and inverting some cuts in the offline analysis

- Exclusion region in the plane ϵ (kinetic mixing parameter) versus Z_D mass, with different assumptions of the BR(H $\rightarrow Z_D Z_D$)
- Values of ε of the order 10⁻⁸ excluded for $\rm Z_{\rm D}$ masses in the range 20 GeV to 60 GeV

10⁻⁸

 10^{-9}

 10^{-10}

10⁻¹¹

20

25

30

35

40

60

 m_{Z_n} [GeV]

50

45

55

Disappearing tracks

- Disappearing tracks as a signature of new long-lived particles in ATLAS (JHEP 06 (2018) 022):
- For instance anomaly-mediated supersymmetry breaking (AMSB) scenarios predict a chargino life-time around 1 ns
- The long-lived chargino decays into a pion (low momentum, not reconstructed) and the lightest supersymmetric particle (LSP), one neutralino:
- Electroweak (left) or strong production (right):

Experimental signature: pixel track ("tracklet")
 without associated hits in the rest of the silicon
 tracker (= disappearing track), large missing
 transverse momentum and also high energetic jets

Disappearing tracks

 95% CL electroweak channel exclusion limits in the plane chargino lifetime and mass, using 2015 and 2016 data

 95% CL exclusion limit in the strong channel in the plane chargino-gluino masses, using chargino lifetime assumption of 1 ns and a compressed spectra hypothesis (mass difference lower than 200 GeV)

Similar analysis performed in CMS: JHEP 08 (2018) 016

- Decays of stopped exotic long-lived particles in CMS (JHEP 05 (2018) 127):
- A search for heavy exotic LLP was performed, looking for lifetimes between 100 ns up to 10 days
- Nuclear interactions and/or ionisation can stop completely heavy LLP
- out-of-collision time used to discriminate these decays, using dedicated trigger to select events away by more than 50ns from the pp collisions
- Experimental signature: large energy deposit in calorimeters or displaced muon tracks

- Specific cosmic runs with these dedicated triggers were taken several days after the beams stopped to get a control sample
- Main backgrounds are the cosmic muons, beam halo and hadronic calorimeter noise
- Split SUSY model: two candidates as LLP (gluino and/or top squarks) and BSM scenarios predict some doubly-charged LLP, that could decay into a pair of same-sign muons

Stopped LLP

• Calorimeter search results: lifetimes between 10 μs and 1000 s excluded for $m_{\widetilde{g}}$ < 1385 GeV and $m_{\widetilde{t}}$ < 744 GeV

 Muon pairs search results: gluino mass excluded between 400 and 980 GeV for cτ in the range 10 µs and 1000 s

Similar analysis performed in ATLAS: *Phys. Lett. B* 743 (2015) 15

Heavy charged LLP

- Search for heavy stable charged particles in ATLAS (<u>arXiv:1808.04095</u>):
- Several SUSY models (split SUSY, AMSB) predict the production of R-hadrons, composite colourless states of a gluino together with SM quarks or gluon
- Heavy charged long-lived particles are supposed to travel well below c, giving higher ionisation than SM particles

 Pixel detector is used to measure the ionisation energy loss of charged particles (dE/dx)

Physics Institute

• For metastable R-hadrons, large transverse missing momentum from neutralinos, while stable R-hadrons will not decay inside the detector

Heavy charged LLP

 Gluino masses excluded up to 1809 GeV for stable LLP

Physics Institute

- Observed 95% CL limits on gluinos masses and lifetimes, using 8 TeV data (blue), first 13 TeV data (pink) and finally full 2015/2016 datasets (red)
- Sensitivity for shorter than 1ns lifetimes falls sharply and will be complemented by displaced vertices/disappearing tracks searches

Heavy charged LLP

- Search for heavy stable charged particles in CMS (*Phys. Rev. D 94 (2016) 112004*):
- Both tracker and muon system combined in CMS search for HSCP
- dE/dx from silicon tracker:

- New mass limits for long-lived gluinos, top squarks, tau sleptons and multiply charged LLP derived, improving Run 1 of LHC limits
- R-hadron like HSCP limits given for several gluino-gluon hadronization fractions and two different interaction models
- Gluino mass limit up to 1610 GeV

Physics Institute

Adding the time of flight in muon system:

Reinterpretation

- Reinterpretation of (prompt decay) SUSY searches in ATLAS (<u>ATLAS-CONF-2018-003</u>):
- A set of nine ATLAS SUSY searches were reinterpreted in the context of long-lived particle searches
- RPV coupling strength could be varied: LSP could be stable/long-lived particle

Physics Institute

• ATLAS summary LLP searches:

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

*Only a selection of the available lifetime limits on new states is shown.

 $(\gamma\beta = 1)$

Physics Institute III A

ICPPA-2018 - Daniel Teyssier

Conclusion

- Long-lived new particle searches are complementary to prompt decay searches
- A lot of new experimental signatures emerge from several theoretical scenarios
- No deviations from SM background observed
- New lower mass limits were set in different SUSY or BSM scenarios
- Several order of magnitude of LLP lifetimes probed by both ATLAS and CMS
- Sensitivity will be improved using latest run 2 of LHC data and/or next run 3 data

Backup

10/22/2018

ICPPA-2018 - Daniel Teyssier

18

• CMS summary LLP searches:

CMS long-lived particle searches, lifetime exclusions at 95% CL

Physics Institute III

CMS-TDR-016

HL-LHC

FTR-18-002

Physics Institute