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The cosmological model
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The cosmological model

The action reads as follows:

S=Jy dDz\/@{al(R[g] —2N) + a2 Lo[g]},

where

ﬁg[g] = RMNPQRMNPQ — 4RMNRMN + R? - Gauss-Bonnet term.
The following manifold is considered:
M=Rx M; x...x M,

with the cosmological metric
g=—dt@dt+> " Be?tdy' @dy'.

B; > 0 are arbitrary constants, i =1,..., n.

My, ..., M, are one-dimensional

manifolds, R or S, n > 3.
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The cosmological model

The equations of motion for the action leads us the to the set
of following polynomial equations:

Gijv'v/ + 2N — aG,-J-k,v’vJvkv’ =0

4 = 2 .8
2G;v — gaG,-jk/vJv v] ;v - gstvsvf + §/\: 0

For A =0 and n > 3 an isotropic solution

where o = az /a1, vi=...=v" = H exists only if « <0

Gj=06;—-1 There are no more than 3 different numbers among
1 n —

Gijii = GijGik Git Gjx Gjy Gy vi,...,v", when A =0.

This is also valid for the case A # 0 when 3°7_, v/ # 0.
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Solutions with two Hubble-like parameters

Class of solutions with the following set of Hubble-like

parameters:
-3 /
L
v=( HHH H,....H h ... h).
N’

our" space internal space

For an accelerated expansion of a 3-dimensional subspace we put H > 0.
The m-dimensional factor space is expanding with the Hubble parameter

H > 0, while the evolution of the /-dimensional factor space is described by the
Hubble-like parameter h.

mH + lh # 0,
H+#h

Restrictions on parameters H and h:
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Solutions with two Hubble-like parameters

That leads us to the following set of two polynomial equations

E = mH? + In? — (mH + Ih)2 + 2A — a[m(m — 1)(m — 2)(m — 3)H*
+ 4m(m — 1)(m — 2)IH3h + 6m(m — 1)I(/ — 1)H?H?
+ami(l — 1)(/ — 2)HR® + I(/ — 1)(1 — 2)(/ — 3)h*] = 0,
1

Q= (m—1)(m—2)H?>+2(m—1)() — 1)Hh+ (I — 1)(I — 2)h* = e

Then for m > 2 and | > 2 we get H = (—2aP)~'/2, where

P =Px,ml) = (m—1)(m—2)+2(m—1)(/ — D)x + (I — 1)(/ — 2)x°,
(2.1)
x=h/H, oP < 0. (2.2)
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Solutions with two Hubble-like parameters

So we get the following relation:

Aa = A = \(x,m,l) = = (P(x,m,])) " *M(x,m,])

+ Z(P(x,m, 1)) 2R(x,m,]), (2.3)

Ol N

where

M(x,m, 1) = m+ Ix* — (m+ Ix)?,
R(x,m,l) = m(m —1)(m —2)(m — 3) + 4m(m — 1)(m — 2)Ix
+6m(m — 1)I(1 — 1)x* + 4mi(l — 1)(1 — 2)x> + I(/ = 1)(/ — 2)(/ — 3)x".
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Solutions with two Hubble-like parameters

The relation (2.1) is valid only if P(x,m,l) # 0, so:
x#xx =xx(ml)= 7(m71()/(11)1()ljj2)A(m’/)

A(m)y =(m—-1)({—-1)(m+1-3)=A(/,m).

Here x4 (m,/) are roots of the quadratic equation P(x,m,/) =0

)

These roots obey the following relations:
xp(m,Nx_(m,l) = % xp(m,l) + x_(m,l) = =2

which lead us to the inequalities x_(m,/) < x;(m,l) < 0.

(2.4)

(m—1)
—2
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Solutions with two Hubble-like parameters

Using (2.2) and (2.3) we get A = a1 \(x,m,/), where

> x_(m,]) < x < xy(m,]) for « >0
> x < x_(m,)[), or x > xy(m,l) for a« <0

For o < 0 we have the following limit

. I(1+1)
| N=o()=—— T2
im AGoml) = Aso(]) ED R
Hence 10+ 1)
. B _ +
Jm A=A = 8a(l—1)(1 - 2) >0, I>2

We note that A, does not depend upon m.
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Solutions with two Hubble-like parameters

For x = 0 we get:

m(m+1)
8a(m—1)(m—2)

A=No=aX\0ml) = — >0, m> 2.

We see that Ao does not depend upon /.
For x = 0 the Hubble-like parameters read
H=Hy=(—2a(m—-1)(m-2))"Y2  h=0

and so we get the product of (a part of) (m + 1)-dimensional de-Sitter
space and /-dimensional Euclidean space.
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Solutions with two Hubble-like parameters

“Master” equation.
We rewrite eq. (2.3) in the following form

2P (x,m,)M(x,m,I) + R(x,m,l) — 8A(P(x,m,l))? = 0. (2.5)

This equation may be called as a master equation, since the solutions
under consideration are governed by it. The master equation is of fourth
order in x for A # Ao (/) or less (of third order for A = Ao (/)).
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Now if we analyze the behaviour of the function A(x,m./), for fixed m,/
and x # x4 (m,l), then we obtain the following extremum points:

xX; =1,
xp = xp(m,) = —%‘21 <0,
Xe = x(m,) = —'ff_lz <0,
xg = xg(m,]) =-7<0.

So for A\; = A\(x;,m,I), i = a,b,c,d we obtain

(m+1—1)(m+1)

<0,
8(m+1—-3)(m+1-2)

Xo=—

CIm?+ (P —81+8)m+ 12—

YT B m D rm—3)

mi?+(m?—8m+8)+m?—m
8(m—2)(I—1)(/+ m—3)
Ay ml(m+1)
7 8(Im2 + mi2 — 2m2 — 212 + 2Im)

>0,

Ae =
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Solutions with two Hubble-like parameters
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We present some examples of the function A\(x) = Aa. At this figures the
point (x;, A;) is marked by i, where i = a,b,c,d.

i I i i
. 1| :
| | | |
| Q| ool i e 1
I T\ ez | b |
| : | |
: | o Alx) 0 } :
—znl -18 -16 -I4 -12 -10 -8 -6 —4} ) | :
i ’ | oo | |
| | |-02 | =0 |
| a>0 | | |
| | —04] | |
| [ | |
| | r-04 ~ _'
| | -25 -2 71\,) -1 -05
Figure: The function A(x) = A(x)a for Figure: The function A(x) = A(x)«
a>0 m=12and | =3. fora>0and m=1=4.
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Solutions with two Hubble-like parameters

Bounds on Aa for a > 0.
Summarizing all cases we find that for a > 0 exact solutions under
consideration exist if and only if

fi >
Aa < M form =, (2.6)
A, for m < /]

Bounds on A|a| for a < 0.

For o < 0 exact solutions under consideration exist if and only if

(D-2)(D-1)

AR CEDIGEE)

(2.7)
This relation is valid for all m > 2,/ >2 (D =m+1+1), eg. for m= 3.
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Stability analysis

Here we study the stability of exponential solutions with non-static total

volume factor, i.e. we put

Si(v) =) v #0. (3.1)
i=1
Earlier, it was proved that a constant solution (h(t)) = (v/) (i=1,...,m n>3)is
stable under perturbations
H(t) = v/ + 8K (t), (as t — 400) (3.2)
in the following case: and it is unstable when
51(v):2":vk >0 Siv)=> v <o.
k=1 k=1
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Stability analysis

For our consideration we have Si(v) = mH + /h.
The perturbations h' obey (in the linear approximation) the following set of
linear equations:

Gi(v)oh' =0, (3.3)
LU(v)diri = B;j(v)éirj. (3.4)
Here
Gi(v) = 2vi — 4aGjs vV V¥ V°, (3.5)
L,-j(v) = 2G,'j — 404G,-jk5vkvs, (36)
u 4
Bi(v) = —(D_ v)Li(v) — Li(v) + 3% (3.7)
k=1
where v; = G,-J-vj, Li(v) =2v; — %aG,-jksvjvkvs and ij k,s=1... n.
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Stability analysis
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In our case the set of equations on perturbations (3.3), (3.4) has the following

solution
oh' = A"exp(—S1(v)t), (3.8)
zn: G(v)A =0, (3.9)
i=1
(A" are constants) i =1,...,n.
For the vector v the matrix L is a block-diagonal one
(Lj) = diag(Lyv, Lag), (3.10)
where
Ly = Guu(2 4 4aSpn), (3.11)
Log = Gap(2 + 4aSph) (3.12)
and
Shn = (m —2)(m — 3)H> +2(m — 2)IHh + I(] — 1)h%, (3.13)
Spn = m(m — 1)H> +2m(l — 2)Hh + (I — 2)(/ — 3)K*. (3.14)
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Stability analysis

The matrix (3.10) is invertible only if m > 1, / > 1 and

1 1
Sun # % Shn # — (3.15)

o’ 2a°
Inequalities (3.15) are obeyed if x # —7=2 = x. and x # — 7= = x,
for I > 2.
In our paper we proved that cosmological solutions under consideration, which
obey x = h/H # x;, i = a,b,c,d, where

m-—1 m—2
Xa=1, xp=——— X = ——F———, Xd = —

/-2 -1 e

are stable if i) x > x4 and unstable if ii) x < xg.
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Stability analysis
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Bounds on A« for stable solutions with o > 0.
Summarizing all cases presented above we find that for o > 0 stable exact
solutions under consideration exist if and only if

A, for m > 21
/\a<{ dolorm =25 (3.16)

A, for m < 21,

where A\c = Ac(m,/) and Ay = Ag(m,/) are defined in (2.6). For m = 3 and
I > 2 we are led to relation Aa < Ac.

Bounds on A|a| for stable solutions with « < 0.
In the case o < 0 we obtain

1, Aa| > |Asl,
I'I+(/\, a) = 27 p\al < A|a| < |)\00|a (317)
0, Alal < Al
For o < 0 stable exact solutions under consideration exist if and only if the

relation (Ala| > |A,]) is obeyed.
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Solutions describing a small eno
[ Je]e]ele]e}

Solutions describing a small enough variation of G

Here we analyze the solutions by using the restriction on variation of the
effective gravitational constant G, which is inversely proportional (in the
Jordan frame) to the volume scale factor of the (anisotropic) internal space, i.e.

G = const exp [—(m — 3)Ht — Iht]. (4.1)

By using (4.1) one can get the following formula for a dimensionless
parameter of temporal variation of G (G-dot):

G
CH= —(m =3+ Ix), x = h/H. (4.2)

Here H > 0 is the Hubble parameter. Due to observational data, the variation

0

of the gravitational constant is on the level of 1072 per year and less.
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Solutions describing a small eno
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When the value § is fixed we get from (4.2)

(mf3+5).

x = xo0(0) = xo(6,m,l) = — ;

(4.3)

The substitution of x = xo(d,m,/) into quadratic polynomial (2.1) gives us

P(x0(8,m,),m,) = P(x0(0,m,l),m,I)
4(l— 1)(m+1-3)
_ 5

0+ ( 32( )62, (4.4)
where

L+ 1-3)G-mi+am—6. (45)

P(x0(0,m,l),m,l) = Po(m,l) = ;

We note that equation Po(m,/) = 0 implies relation
I=h(m)=2"02 =2+ 2 m#b5.

For m > 9 we get 2 < lp(m) < 3, that means that integer solutions are absent
in this interval.
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Solutions describing a small eno
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Solutions describing a small enough variation of G

For 3 < m <9 and m # 5, the only integer values of lp(m) > 2 takes
place for m = 6,7,9 and we get a special set of pairs (m,/):

A) (m,]) = (6,6), (7,4), (9,3). (4.6)

In the case A) the restriction gives us (see (4.4)) § # 0 and
—4(1+m—3)§+ (1 —2)82 # 0 for | > 2 which lead us to two restrictions:

I+m-—3

4
0 #0andd # 3

=9,16,36 (4.7)
for (m,l) = (6,6), (7,4), (9,3), respectively.
But the second one may be omitted due to bounds on the value of the

dimensionless variation of the effective gravitational constant.
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Solutions describing a small eno
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Let us consider the second case

B) m=5, [>2. (4.8)

In this case the restriction reads
4(14+2) —4(1 = 1)(1 +2)5 + (I — 1)(1 — 2)62 # 0, (4.9)

I > 2. It may be rewritten as

(1-2) (1 +2)

The first restriction § # 6,(5,/), | > 2, may be omitted due to the
bounds. The second restriction forbids one value of § obeying the bounds
for big anough value of / (e.g., for / > 1000).

54 6.5 =2U*2) <1j: (1_1’2> (4.10)
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Now we consider the last case

C) (m,l) do not belong to cases A and B. (4.11)
In the case C) the restriction reads
(I+m—=3)[(5—m)l+2m—6]—4(/—1)(/+m—3)s+ (I —1)(/—2)6% # 0,

I > 2. It may be rewritten as

_(I+m=3) 12(m —1)
5#5i(m,/):2ﬁ (11\/4(/_1)(/+m_3)>. (4.12)

The first restriction 6 # d+(m,/) (I > 2) may be omitted due to the

bounds since d..(m,/l) > 2(12’,'1’;)3) >2form>2[>2.

So, the only second restriction § # §_(m,l), should be imposed
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Now we analyse the stability of these special solutions.
The main condition for stability xo(d) > Xy is satisfied since

x0(0) —xg=—2>0 (4.13)

due to our bounds.

Other three conditions are satisfied due to bounds and inequalities:
0, < =3, 0p > 2 and 6. > 1. We have shown that all well-defined
solutions under consideration, which obey our restrictions and the
physical bounds, are stable.

THANK YOU FOR YOUR ATTENTION!
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Exact exponential cosmological solutions for m =1

Master equation. The master equation reads

For any m > 2 the master equation reads
Az* 4+ Bax®> +Cz? + Bz + A =0, (0.1)

where

A=8\(m—-2)?’(m—-1)+m(m+1)(m - 2),
B =32X(m —2)(m —1)2 4+ 4m(m — 1)2,
C = 16X(m — 1)(3m? —8m 4+ 6) + 2m(m — 1)(3m — 4).

It may be solved in radicals, e.g. by using Maple or
Mathematica. For A # 0, or A # Ao(m) < 0 we obtain

1
xzﬂ[—B—Fyl\/E—QBz/g\/E-i—l/g\/E], (0.2)
where v1 = 1, vo» = +1 and
d=8A% —4CA+ B2, (0.3)
E = —8A% —4CA + 2B~ (0.4)

The special solution for m = 3 was considered recently
in ref. TvKob.
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Conclusions

In the D-dimensional Einstein-Gauss-Bonnet-A model
and two constants a3 and as we have found for (fine-
tuned) A = A(z,m,l,a) with a@ = ap/a; a class of cos-
mological solutions with exponential time dependence
of two scale factors. The solutions are governed by two
Hubble-like parameters H > 0 and h, corresponding to
submanifolds of dimensions m > 2 and [ > 2, respec-
tively, with D =14+ m+1. Here m > 2, Il > 2 and
parameter x = h/H satisfies the restrictions: x= # 1,
x # xg=—m/l and ¢ # x4.

. Any solution describes an exponential expansion
of 3d subspace with the Hubble parameter H > 0 and
anisotropic behaviour of (m —3+41)-dimensional internal
space.

. T he solutions are governed by master equation
A(x,m,l,a) = A\, which may be solved in radicals for all
values of A (the case m =1 is presented).

Here we have obtained the bounds on A which
guarantee the existence of the exponential (e.g. stable)
cosmological solutions under consideration.

We have proved that any of these solutions obeying
x 7 —2=2 and ¢ ¥ —"=1L, is stable (as t — +o0) if
x > xqg = —m/l and unstable if z < zq.

It was also shown that all (well-defined) solutions
with small enough varation of the effective gravitational
constant G (in the Jordan frame) are stable.
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