On generalized Melvin's solutions for Lie algebras of rank 3

V. D. Ivashchuk, S. V. Bolokhov

VNIIMS and Institute of Gravitation and Cosmology RUDN University, Moscow, Russia

ICPPA-2018

The 4th International Conference on Particle Physics and Astrophysics October 22 – 26, 2018, Moscow, Russia

Overview

- We consider a multidimensional analogue of Melvin's solution associated with a simple Lie algebra \mathcal{G} .
 - The system is a static cylindrically-symmetric gravitational configuration in D dimensions in presence of n Abelian 2-forms and $l \ge n$ scalar fields where n is the rank of \mathcal{G} .
 - The solution is governed by n functions $H_s(\rho)$ obeying a set of second-order ODEs with certain boundary conditions. It was conjectured earlier that these functions should be **polynomials** [*Ivashchuk*'2002].
- We obtain the polynomials corresponding to the rank-3 Lie algebras A_3 , B_3 and C_3 and reveal some algebraic properties of the solution such as symmetry and duality identities.
- We also find the asymptotic behavior of the solution as well as 2-form flux integrals and corresponding Wilson loop factors.

The model

Let us consider a D-dimensional model governed by the action

$$S = \int d^D x \sqrt{|g|} \left\{ R[g] - h_{\alpha\beta} g^{MN} \partial_M \varphi^\alpha \partial_N \varphi^\beta - \frac{1}{2} \sum_{s=1}^n e^{2\lambda_s(\varphi)} (F^s)^2 \right\}$$

•
$$g = g_{MN}(x)dx^M \otimes dx^N$$
 is a metric; $|g| = |\det(g_{MN})|$

•
$$\varphi = (\varphi^{\alpha}) \in \mathbb{R}^{l}$$
 is a vector of l scalar fields

- $(h_{\alpha\beta})$ is a constant symmetric non-degenerate $l \times l$ matrix
- $F^s = dA^s = \frac{1}{2}F^s_{MN}dz^M \wedge dz^N$ is a 2-form field, s = 1, ..., n; $(F^s)^2 \equiv F^s_{M_1M_2}F^s_{N_1N_2}g^{M_1N_1}g^{M_2N_2}$
- λ_s is a 1-form on \mathbb{R}^l : $\lambda_s(\varphi) = \lambda_{s\alpha}\varphi^{\alpha}$, s = 1, ..., n; $\alpha = 1, ..., l$.

The general solution

Consider a family of exact solutions depending on one variable ρ and defined on the manifold $M = (0, +\infty) \times M_1 \times M_2$.

- M_1 is a one-dimensional manifold (say S^1 or \mathbb{R});
- M_2 is a (D-2)-dimensional Ricci-flat manifold.

The solution reads:

$$g = \left(\prod_{s=1}^{n} H_s^{2h_s/(D-2)}\right) \left\{ wd\rho \otimes d\rho + \left(\prod_{s=1}^{n} H_s^{-2h_s}\right) \rho^2 d\phi \otimes d\phi + g^2 \right\}$$
$$F^s = q_s \left(\prod_{s'=1}^{n} H_{s'}^{-A_{ss'}}\right) \rho d\rho \wedge d\phi; \quad \exp(\varphi^\alpha) = \prod_{s=1}^{n} H_s^{h_s \lambda_s^\alpha}$$

where s = 1, ..., n; $w = \pm 1$; $g^1 = d\phi \otimes d\phi$ is a metric on M_1 ; g^2 is a Ricci-flat metric on M_2 .

The general solution

The functions $H_s(z) > 0$, $z \equiv \rho^2$, obey the equations

$$\frac{d}{dz}\left(\frac{z}{H_s}\frac{d}{dz}H_s\right) = P_s \prod_{s'=1}^n H_{s'}^{-A_{ss'}} \,, \qquad H_s(+0) = 1$$

- P_s = (1/4)K_sq_s², where q_s are integration constants
 h_s = K_s⁻¹
- $K_s = B_{ss} > 0$ • $B_{ss'} \equiv 1 + \frac{1}{2-D} + \lambda_{s\alpha}\lambda_{s'\beta}h^{\alpha\beta}$, s, s' = 1, ..., n
- $(h^{\alpha\beta}) = (h_{\alpha\beta})^{-1}; \quad \lambda_s^{\alpha} = h^{\alpha\beta}\lambda_{s\beta}$
- $A_{ss'} = 2B_{ss'}/B_{s's'}$ is the **Cartan matrix** for a simple Lie algebra \mathcal{G} of rank n.

- The solution under consideration is as a special case of the **fluxbrane** (for w = +1, $M_1 = S^1$) and S-brane (w = -1) solutions.
- If w = +1 and the Ricci-flat metric g_2 has a pseudo-Euclidean signature, we get a multidimensional generalization of **Melvin's solution** originally describing the gravitational field of a magnetic flux tube [Melvin'1964].
 - Melvin's solution (without scalar field) corresponds to D = 4, $n = 1, M_1 = S^1 (0 < \phi < 2\pi), M_2 = \mathbb{R}^2, g_2 = -dt \otimes dt + d\xi \otimes d\xi$ and $\mathcal{G} = A_1$.
- For w = −1 and g₂ of Euclidean signature we obtain a cosmological solution with a horizon (as ρ = +0) if M₁ = ℝ (−∞ < φ < +∞)

The Polynomial Conjecture

According to a conjecture [Ivashchuk'2002], the solutions governed by the Cartan matrix $(A_{ss'})$ are **polynomials** (the so-called fluxbrane polynomials):

$$H_s(z) = 1 + \sum_{k=1}^{n_s} P_s^{(k)} z^k$$

• $n_s = 2 \sum_{s'=1}^{n} A^{ss'}$ – components of a twice dual Weyl vector in the basis of simple co-roots

• $(A^{ss'}) \equiv (A_{ss'})^{-1}$ – the inverse Cartan matrix.

• $P_s^{(k)}$ are constants $(P_s^{(1)} \equiv P_s)$. Here $P_s^{(n_s)} \neq 0$. Below we will use the rescaled variables $p_s = P_s/n_s$.

In previous works this conjecture was verified for some cases of the classic Lie algebra series as well as for exceptional algebras G_2 , E_6 . Here we analyze the solution in case of rank-3 Lie algebras A_3 , B_3 and C_3 in more detail.

Case of the rank-3 Lie algebras

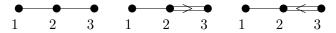
We deal with the solution for n = l = 3, w = +1 and $M_1 = S^1$. We put here $h_{\alpha\beta} = \delta_{\alpha\beta}$ and denote $(\lambda_{sa}) = (\lambda_s^a) = \vec{\lambda}_s$, $s = 1, \dots, 3$.

For $\mathcal{G} = A_3$, B_3 , C_3 respectively we have:

• The Cartan matrices

$$(A_{ss'}) = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -2 & 2 \end{pmatrix}$$

• The Dynkin diagrams:



• The degrees of the fluxbrane polynomials $H_s(z)$: $(n_1, n_2, n_3) = (3, 4, 3), (6, 10, 6), (5, 8, 9)$ We can write the explicit form of the fluxbrane polynomials in case of Lie algebras A_3, B_3, C_3 .

The case $A_3 \cong sl(4)$

$$H_{1} = 1 + 3p_{1}z + 3p_{1}p_{2}z^{2} + p_{1}p_{2}p_{3}z^{3}$$

$$H_{2} = 1 + 4p_{2}z + (3p_{1}p_{2} + 3p_{2}p_{3})z^{2} + 4p_{1}p_{2}p_{3}z^{3} + p_{1}p_{2}^{2}p_{3}z^{4}$$

$$H_{3} = 1 + 3p_{3}z + 3p_{2}p_{3}z^{2} + p_{1}p_{2}p_{3}z^{3}$$

イロト イロト イヨト イヨト 三日

9/19

The polynomials $H_s(z)$ for the 3-rank Lie algebras

The case $B_3 \cong so(7)$

- $H_1 = 1 + 6p_1z + 15p_1p_2z^2 + 20p_1p_2p_3z^3 + 15p_1p_2p_3^2z^4 + 6p_1p_2^2p_3^2z^5 + p_1^2p_2^2p_3^2z^6$
- $$\begin{split} H_2 &= 1 + 10p_2 z + (15p_1p_2 + 30p_2p_3) z^2 + \left(80p_1p_2p_3 + 40p_2p_3^2\right) z^3 \\ &+ \left(50p_1p_2^2p_3 + 135p_1p_2p_3^2 + 25p_2^2p_3^2\right) z^4 + 252p_1p_2^2p_3^2 z^5 \\ &+ \left(25p_1^2p_2^2p_3^2 + 135p_1p_2^3p_3^2 + 50p_1p_2^2p_3^3\right) z^6 + \left(40p_1^2p_2^3p_3^2 + 80p_1p_2^3p_3^3\right) z^7 \\ &+ \left(30p_1^2p_2^3p_3^3 + 15p_1p_2^3p_3^4\right) z^8 + 10p_1^2p_2^3p_3^4 z^9 + p_1^2p_2^4p_3^4 z^{10} \\ H_3 &= 1 + 6p_3 z + 15p_2p_3 z^2 + \left(10p_1p_2p_3 + 10p_2p_3^2\right) z^3 + 15p_1p_2p_3^2 z^4 \\ &+ 6p_1p_2^2p_3^2 z^5 + p_1p_2^2p_3^3 z^6 \end{split}$$

The case $C_3 \cong sp(3)$

$$\begin{split} H_1 &= 1 + 5p_1z + 10p_1p_2z^2 + 10p_1p_2p_3z^3 + 5p_1p_2^2p_3z^4 + p_1^2p_2^2p_3z^5 \\ H_2 &= 1 + 8p_2z + (10p_1p_2 + 18p_2p_3) z^2 + (40p_1p_2p_3 + 16p_2^2p_3) z^3 \\ &\quad + 70p_1p_2^2p_3z^4 + (16p_1^2p_2^2p_3 + 40p_1p_2^3p_3) z^5 + (18p_1^2p_2^3p_3 + 10p_1p_2^3p_3^2) z^6 \\ &\quad + 8p_1^2p_2^3p_3^2z^7 + p_1^2p_2^4p_3^2z^8 \\ H_3 &= 1 + 9p_3z + 36p_2p_3z^2 + (20p_1p_2p_3 + 64p_2^2p_3) z^3 + (90p_1p_2^2p_3 \\ &\quad + 36p_2^2p_3^2) z^4 + (36p_1^2p_2^2p_3 + 90p_1p_2^2p_3^2) z^5 + (64p_1^2p_2^2p_3^2 + 20p_1p_2^3p_3^2) z^6 \\ &\quad + 36p_1^2p_2^3p_3^2z^7 + 9p_1^2p_2^4p_3^2z^8 + p_1^2p_2^4p_3^3z^9. \end{split}$$

Symmetry and duality

• The asymptotical behaviour of the polynomials as $z \to \infty$: $H_s = H_s(z, (p_i)) \sim \left(\prod_{l=1}^3 (p_l)^{\nu^{sl}}\right) z^{n_s} \equiv H_s^{\mathrm{as}}(z, (p_i)); \quad \sum_{s=1}^3 \nu^{sl} = n_l.$

• (ν^{sl}) are components of the integer valued matrix $\nu(\mathcal{G})$:

$$\nu(A_3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \ \nu(B_3) = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 4 & 4 \\ 1 & 2 & 3 \end{pmatrix}, \ \nu(C_3) = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 4 & 2 \\ 2 & 4 & 3 \end{pmatrix}$$
$$\boxed{\nu(\mathcal{G}) = A^{-1}(\mathcal{G})(I + P(\mathcal{G}))}, \quad P(\mathcal{G}) = (P_j^i) = \begin{cases} \delta_{\sigma(j)}^i, & \mathcal{G} = A_3 \\ \delta_j^i, & \mathcal{G} = B_3, C_3 \end{cases}$$

• Here we introduced a **permutation** $\sigma : (1, 2, 3) \mapsto (3, 2, 1)$ of the vertices of the Dynkin diagram. This is a generator of the symmetry group $G = \{\sigma, id\} \cong \mathbb{Z}_2$ of the diagram for A_3 case.

Symmetry and duality

Define the <u>dual ordered set</u> of variables \hat{p}_i , i = 1, 2, 3:

- $\hat{p}_i = p_{\sigma(i)}$ for the A_3 case
- $\hat{p}_i = p_i$ for B_3 and C_3 cases

The following properties hold true:

Proposition 1 (the symmetry relations)

For all p_i and z in case of $\mathcal{G} = A_3$

$$H_{\sigma(s)}(z,(p_i)) = H_s(z,(\hat{p}_i)), \quad s = 1, 2, 3$$

Proposition 2 (the duality relations)

For all $p_i \neq 0$ and $z \neq 0$ in case of $\mathcal{G} = A_3, B_3, C_3$

$$H_s(z,(p_i)) = H_s^{\rm as}(z,(p_i))H_s(z^{-1},(\hat{p}_i^{-1})), \quad s = 1, 2, 3.$$

13/19

・ロン ・四と ・ヨン ・ヨン

The solution in case of rank-3 Lie algebras

The manifold: $M = (0, +\infty) \times M_1 \times M_2$.

•
$$M_1 = S^1 \ (0 < \phi < 2\pi);$$

• M_2 is a (D-2)-dimensional Ricci-flat manifold.

The solution:

$$g = \left(\prod_{s=1}^{3} H_s^{2h_s/(D-2)}\right) \left\{ d\rho \otimes d\rho + \left(\prod_{s=1}^{3} H_s^{-2h_s}\right) \rho^2 d\phi \otimes d\phi + g^2 \right\}$$
$$F^s = \mathcal{B}^s \rho d\rho \wedge d\phi; \quad \exp(\varphi^a) = \prod_{s=1}^{3} H_s^{h_s \lambda_s^a}; \qquad a, s = 1, \dots, 3$$

$$\mathcal{B}^{s} = q_{s} \left(\prod_{l=1}^{3} H_{l}^{-A_{sl}} \right); \quad K_{s} = \frac{D-3}{D-2} + \vec{\lambda}_{s}^{2}, \quad \vec{\lambda}_{s} \vec{\lambda}_{l} = \frac{1}{2} K_{l} A_{sl} - \frac{D-3}{D-2}, \\ h_{s} = K_{s}^{-1} = \underbrace{(h, h, h)}_{\text{for } A_{3}}, \underbrace{(h, h, 2h)}_{\text{for } B_{3}}, \underbrace{(h, h, h/2)}_{\text{for } C_{3}}, \\ \underbrace{(h, h, h/2)}_{\frac{14}{19}} = \underbrace{(h, h, h)}_{\frac{14}{19}}, \underbrace{(h, h, 2h)}_{\frac{14}{19}}, \underbrace{(h, h, h/2)}_{\frac{14}{19}}, \underbrace{(h, h/2)}_{\frac{$$

The fluxes

Consider 2-dimensional manifold $M_R = (0, R) \times S^1$, R > 0. • The **flux integral** over M_R :

$$\Phi^{s}(R) = \int_{M_{R}} F^{s} = 2\pi \int_{0}^{R} d\rho \rho \mathcal{B}^{s} = 4\pi q_{s} P_{s}^{-1} \frac{R^{2} H_{s}^{'}(R^{2})}{H_{s}(R^{2})}$$

• The total flux is convergent: $\Phi^s = \Phi^s(+\infty) = 4\pi n_s q_s^{-1} h_s$

- Any (total) flux Φ^s depends upon one integration constant $q_s \neq 0$ (while the integrand form F^s depends upon all constants q_1, q_2, q_3)
- In case of D = 4 and $g^2 = -dt \otimes dt + dx \otimes dx$ the parameter q_s is coinciding up to a sign with the value of the *x*-component of the magnetic field on the axis of symmetry
- There exist (globally defined on \mathbb{R}^2) forms A^s : $dA^s = F^s$. The Wilson loop factors over circle C_R can be calculated:

$$W^{s}(C_{R}) = \exp(i\int_{C_{R}} A^{s}) = \exp(i\Phi^{s}(R)); \lim_{R \to +\infty} W^{s}(C_{R}) = \exp(i\Phi^{s})$$

Asymptotic behaviour

The asymptotic relations for the solution for $\rho \to +\infty$ read

$$g_{\rm as} = \left(\prod_{l=1}^{3} p_l^{a_l}\right)^{\frac{2}{D-2}} \rho^{2A} \left\{ d\rho \otimes d\rho + \left(\prod_{s=1}^{3} p_l^{a_l}\right)^{-2} \rho^{2-2A(D-2)} d\phi \otimes d\phi + g^2 \right\}$$

$$\varphi_{\rm as}^a = \sum_{s=1}^3 h_s \lambda_s^a \left(\sum_{l=1}^3 \nu^{sl} \ln p_l + 2n_s \ln \rho \right)$$
$$F_{\rm as}^s = q_s p_s^{-1} p_{\theta(s)}^{-1} \rho^{-3} d\rho \wedge d\phi, \qquad a, s = 1, \dots, 3$$

where we put $\theta = \sigma$ for $\mathcal{G} = A_3$, and $\theta = \text{id for } \mathcal{G} = B_3, C_3$; $a_l = \sum_{s=1}^3 h_s \nu^{sl}, \qquad A = 2(D-2)^{-1} \sum_{s=1}^3 n_s h_s.$

> <ロト < 部ト < 言ト < 言ト 言 の Q () 16 / 19

Conclusions

- We have considered a generalization of the Melvin's solution associated to simple finite-dimensional Lie algebras of rank 3: $\mathcal{G} = A_3, B_3, C_3.$
- Any solution is governed by a set of 3 fluxbrane polynomials $H_s(z), s = 1, 2, 3.$
- The symmetry and duality identities for polynomials are proved, which may be used in deriving $1/\rho$ -expansion for solutions at large distances.
- Asymptotic behaviour of the solutions is also found.
- 2D flux integrals and corresponding Wilson loop factors are calculated, their convergence is demonstrated.
- Another possible application of the solutions considered is to study cosmological analogues of such solutions with phantom scalar fields.

- M.A. Melvin, Pure magnetic and electric geons, *Phys. Lett.* **8**, 65 (1964).
- V.D. Ivashchuk, Composite fluxbranes with general intersections, *Class. Quantum Grav.*, **19**, 3033-3048 (2002); hep-th/0202022.
- A.A. Golubtsova and V.D. Ivashchuk, On Multidimensional Analogs of Melvin's Solution for Classical Series of Lie Algebras, *Grav. Cosmol.*, Vol. 15, No. 2, 144-147 (2009); arXiv: 1009.3667
- C.-M. Chen, D.V. Gal'tsov and S.A. Sharakin, Intersecting *M*-fluxbranes, *Grav. Cosmol.* 5, No 1 (17), 45-48 (1999); hep-th/9908132.
- V.D. Ivashchuk and V.N. Melnikov, Multidimensional gravitational models: Fluxbrane and S-brane solutions with polynomials, AIP Conference Proceedings, v. 910, p. 411-422 (2007).
- S. V. Bolokhov and V. D. Ivashchuk, On generalized Melvin solution for the Lie algebra E_6 , Eur. Phys. J. 77 (2017): 664 (16 pages); arxiv: 1706.06621.

Thank you for your attention!