Nonstationary self-gravitating configurations of scalar and electromagnetic fields

Yu.V. Tchemarina*, E.G Alekseeva, A.N. Tsirulev and N.K. Nuraliev

Faculty of Mathematics, Tver State University

Faculty of Robotics and Complex Automation, Bauman Moscow State Technical University

ICPPA 2018

Action and stress-energy tensor

The action of the gravitating system of a nonlinear real scalar field and the electromagnetic field, which assumed both to be minimally coupled to gravity, is

$$\Sigma = \int \left(-\frac{1}{2}S + \mathcal{L}_{\phi} - \frac{1}{2}F_{ij}F^{ij} \right) \sqrt{|g|} d^4x,$$

$$\mathcal{L}_{\phi} = \varepsilon \langle d\phi, d\phi \rangle - 2V(\phi),$$

where $F = F_{ij}dx^i \wedge dx^j$ - the electromagnetic field tensor, $\varepsilon = \pm 1$.

The components of the stress-energy tensor are determined by the formulas

$$T = T_{(\phi)} + T_{(em)} ,$$

$$T_{(\phi)ij} = 2\varepsilon \partial_i \phi \partial_j \phi - (\varepsilon g^{km} \partial_k \phi \partial_m \phi - 2V) g_{ij} \ ,$$

$$T_{(em)ij} = -2g_{ik}F_{jl}F^{kl} + \frac{1}{2}g_{ij}F_{kl}F^{kl} \,.$$

Einstein, Klein-Gordon and Maxwell equations

$$R_{ij} - \frac{1}{2}Sg_{ij} = T_{ij}$$

$$\frac{1}{\sqrt{-g}}\partial_i \left(\sqrt{-g}g^{ij}\partial_j \phi\right) + \varepsilon V'_{\phi} = 0, \qquad g = -\det(g_{ij}),$$
$$\frac{1}{\sqrt{-g}}\frac{\partial}{\partial x^i} \left(\sqrt{-g}F^{ij}\right) = 0. \tag{1}$$

Since the space-time is spherically symmetric, the electromagnetic field tensor can be written in the following form

$$F = F_{tr}dt \wedge dr, \qquad F_{tr} = F_{tr}(t,r).$$

References

- Tsirulev A.N., Chemarina Yu.V. The spherically symmetrical topological geons // Vestnik TvGU. Seriya: Prikladnaya matematika [Herald of Tver State University. Series: Applied Mathematics], 2007, no. 6, pp. 61-70. (in Russian)
- Tchemarina Ju.V., Tsirulev A.N. Spherically symmetric gravitating scalar field. The inverse problem and exact solutions // Gravitation and Cosmology 2009, 15, pp. 94-95.
- Salogub E.A., Stolyarova G.N., Chemarina Yu.V. Nonstationary model of a spherically symmetric topological geon // Materials of the International Interdisciplinary Scientific Conference «Synergetics in the social and natural sciences». 2015. p. 110-113. (in Russian)
- Nikonov V.V., Potashov I.M., Tsirulev A.N., Tchemarina Y.V. Circular orbits around gravitating configurations of phantom scalar fields / / Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2016, no. 4, pp. 61-78. (in Russian)
- Kratovich P.V., Tchemarina Ju.V. On the charge-to-mass ratio for selfgravitating systems of scalar and electromagnetic fields // Mathematical Modelling and Geometry. 2017. T. 5. № 2. C. 20-29.

Metric and orthonormal basis

We write the spherically symmetric spacetime metric in the form

 $g = A^2 dt \otimes dt - B^2 dr \otimes dr - C^2 (d\theta \otimes d\theta + sin^2 \theta d\varphi \otimes d\varphi).$

It is easy to obtain directly from the formula (1) the expression

$$F = \frac{ABq}{C^2} dt \wedge dr,$$

where q is electric charge.

In orthonormal basis:

$$Adt = e^{0}, \qquad Bdr = e^{1}, \qquad Cd\theta = e^{2}, \qquad C\sin\theta \,d\varphi = e^{3},$$
$$F = \frac{q}{C^{2}}e^{0} \wedge e^{1}.$$

Einstein equations and characteristic function

$$\begin{aligned} -2\frac{\mathcal{C}_{(1)(1)}}{\mathcal{C}} + 2\frac{\mathcal{B}_{(0)}\mathcal{C}_{(0)}}{\mathcal{B}\mathcal{C}} - \frac{\mathcal{C}_{(1)}^2 - \mathcal{C}_{(0)}^2 - 1}{\mathcal{C}^2} &= \varepsilon \left(\phi_{(1)}^2 + \phi_{(0)}^2\right) + 2V + \frac{q^2}{\mathcal{C}^4}, \\ -2\frac{\mathcal{C}_{(0)(0)}}{\mathcal{C}} + 2\frac{\mathcal{A}_{(1)}\mathcal{C}_{(1)}}{\mathcal{A}\mathcal{C}} + \frac{\mathcal{C}_{(1)}^2 - \mathcal{C}_{(0)}^2 - 1}{\mathcal{C}^2} &= \varepsilon \left(\phi_{(1)}^2 + \phi_{(0)}^2\right) - 2V - \frac{q^2}{\mathcal{C}^4}, \\ \frac{\mathcal{A}_{(1)(1)}}{\mathcal{A}} - \frac{\mathcal{B}_{(0)(0)}}{\mathcal{B}} + \frac{\mathcal{C}_{(1)(1)}}{\mathcal{C}} - \frac{\mathcal{C}_{(0)(0)}}{\mathcal{C}} + \frac{\mathcal{A}_{(1)}\mathcal{C}_{(1)}}{\mathcal{A}\mathcal{C}} - \frac{\mathcal{B}_{(0)}\mathcal{C}_{(0)}}{\mathcal{B}\mathcal{C}} &= \varepsilon \left(\phi_{(0)}^2 - \phi_{(1)}^2\right) - 2V + \frac{q^2}{\mathcal{C}^4}, \\ &- 2\frac{\mathcal{C}_{(0)(1)}}{\mathcal{C}} + 2\frac{\mathcal{B}_{(0)}\mathcal{C}_{(1)}}{\mathcal{B}\mathcal{C}} &\equiv -2\frac{\mathcal{C}_{(1)(0)}}{\mathcal{C}} + 2\frac{\mathcal{A}_{(1)}\mathcal{C}_{(0)}}{\mathcal{A}\mathcal{C}} &= 2\varepsilon \phi_{(0)}\phi_{(1)}, \\ &\phi_{(0)(0)} - \phi_{(1)(1)} + \phi_{(0)}\frac{\left(\mathcal{B}\mathcal{C}^2\right)_{(0)}}{\mathcal{B}\mathcal{C}^2} - \phi_{(1)}\frac{\left(\mathcal{A}\mathcal{C}^2\right)_{(1)}}{\mathcal{A}\mathcal{C}^2} + \varepsilon V_{\phi}' &= 0. \end{aligned}$$

Consider the function $f = C_{(1)}^2 - C_{(0)}^2 = -\langle dC, dC \rangle$.

The solutions of the equation f(C) = 0 define hypersurfaces on which the 1-form dC becomes null. In particular, it is true on event horizons and hence the function f(C) will be referred to as the characteristic function.

Approach to constructing nonstationary configurations

For nonstationary scalar field configuration

 $\phi \neq \phi(\mathcal{C}),$

we separate one invariant equation, written in terms of the characteristic function and scalar field potential

$$d[C(f-1)] = C^2 \left(\varepsilon \left(\phi_{(1)}^2 - \phi_{(0)}^2 \right) - 2V - \frac{q^2}{C^4} \right) dC + 2C^2 \varepsilon \left(C_{(0)} \phi_{(0)} - C_{(1)} \phi_{(1)} \right) d\phi,$$

where

$$C_{(0)}\phi_{(0)} - C_{(1)}\phi_{(1)} = \langle d\phi, dC \rangle, \qquad \phi_{(1)}^2 - \phi_{(0)}^2 = -\langle d\phi, d\phi \rangle.$$

The latter, in turn, gives

$$\langle d\phi, dC \rangle = \frac{\varepsilon}{2c} \partial_{\phi} f, \quad \langle d\phi, d\phi \rangle = -\varepsilon \left(2V + \frac{1}{c} \partial_{C} f + \frac{f-1}{c^{2}} + \frac{q^{2}}{c^{4}} \right).$$

Approach to constructing nonstationary configurations

A significant part of the proposed method is the use of coordinates $(\phi, C, \theta, \varphi)$,

which is possible, at least locally, for any nonstationary configuration.

We have

$$g^{\phi\phi} = \langle d\phi, d\phi \rangle, \qquad g^{C\phi} = \langle dC, d\phi \rangle, \qquad g^{CC} = \langle dC, dC \rangle,$$

Finding the inverse matrix, we obtain the components of the covariant metric tensor and write the metric in coordinates $(\phi, C, \theta, \varphi)$:

$$ds^{2} = -4 \frac{\varepsilon C^{4} f d\phi^{2} + C^{3} f_{\phi}' dC d\phi + (C^{3} f_{C}' + C^{2} (f - 1) + 2C^{4} V + q^{2}) dC^{2}}{4 f C^{2} (2C^{2} V + C f_{C}' + f - 1) - \varepsilon (C f_{\phi}')^{2} + 4 f q^{2}} - C^{2} (d\theta^{2} + \sin^{2} \theta d\varphi^{2}).$$

Approach to constructing nonstationary configurations

The characteristic function and the scalar field potential turn out to be connected by one single Klein-Gordon equation, which takes the form

$$\frac{1}{\sqrt{|g|}}\partial_i\left(\sqrt{|g|}g^{ij}\partial_j\phi\right) + \varepsilon V'_{\phi} = 0 \iff$$

$$\begin{split} \varepsilon &= 1: \quad 8V^2C^8 + \left(6C^7f_C' + 8C^6f - 2C^6f_\phi'' + 8C^4q^2 - 8C^6\right)V + C^6V_\phi'f_\phi' + \\ &+ (-fC^4 - C^2q^2 - f_C'C^5 + C^4)f_\phi'' - f_C''C^6f + C^5f_{\phi C}'f_\phi' + (f_C')^2C^6 + (-3C^5 + 3C^3q^2 + 3C^5f)f_C' + 4f^2C^4 + (8C^2q^2 - 6C^4)f + 2C^4 + 2q^4 - 4C^2q^2 = 0. \end{split}$$

Coordinate system (t, C, θ, φ) :

$$ds^{2} = -\frac{4C^{4}fdt^{2}}{\left(4fC^{2}(2C^{2}V + Cf_{C}' + f - 1) - \left(Cf_{\phi}'\right)^{2} + 4fq^{2}\right)\left(t_{\phi}'\right)^{2}} - \frac{dC^{2}}{f} - C^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}), \quad \frac{t_{C}'}{t_{\phi}'} = \frac{f_{\phi}'}{2Cf}$$

Special case for metric function

Weassume

$$\varepsilon = -1$$
,

$$f(\phi, C) = 1 + C^2 h(\phi).$$

Choosing the characteristic function in this form, we obtain an explicit solution for the scalar field potential

$$V(\phi) = -\frac{3h}{2} - \frac{(h'_{\phi})^2}{8h} - \frac{e^F (h'_{\phi})^2}{8h^2 \int \frac{e^F h'_{\phi}}{h^2} d\phi}, \quad F(\phi) = -4 \int \frac{h}{h'_{\phi}} d\phi$$

This choice of the characteristic function is not accidental. It is due to the possibility of obtaining exact solutions with a nontrivial topology of space-time.

An exact nonstationary solution with a nontrivial topology of space-time

Using the proposed method, we construct a model of nonstationary wormhole.

 $h(\phi) = \phi^2 - 1$

$$V(\phi) = 1 - \frac{3}{2}\phi^{2} + \frac{1 + \phi^{2} - e^{\phi^{2}}}{2(1 + e^{\phi^{2}}(\phi^{2} - 1))}.$$

The integration constant was chosen so that the scalar field potential on the wormhole throat $(\phi = 0)$ is a regular function.

An exact nonstationary solution with a nontrivial topology of space-time

The exact form of the metric in the coordinates (ϕ, C, θ, ϕ)

$$ds^{2} = \frac{1}{\Delta} \left(\left(C^{2} \left(1 - \phi^{2} \right) - 1 \right) d\phi^{2} + 2\phi C d\phi \, dC + \frac{\phi^{2} \left(1 - e^{\phi^{2}} \right)}{1 + e^{\phi^{2}} (\phi^{2} - 1)} \, dC^{2} \right) - C^{2} d\Omega^{2},$$
$$\Delta = \frac{\phi^{2} \left(e^{\phi^{2}} - \phi^{2} C^{2} - 1 \right)}{1 + e^{\phi^{2}} (\phi^{2} - 1)}.$$

Accordingly, the solution is defined in area

$$e^{\phi^2} - \phi^2 C^2 - 1 < 0.$$

An exact nonstationary solution with a nontrivial topology of space-time

Next, we move on to the ordinary coordinates (t, r, θ, φ) .

$$\phi = r, \quad C = \operatorname{ch} t \sqrt{\frac{e^{r^2} - 1}{r^2}} = \operatorname{ch} t \left(1 + \frac{r^2}{4} + O(r^4) \right), \quad r \to 0$$

$$A^2 = \frac{e^{r^2} - 1}{r^2} = 1 + \frac{r^2}{2} + O(r^4), \quad r \to 0;$$

$$B^2 = \frac{e^{r^2} (r^2 - 1) + 1}{r^2 (e^{r^2} - 1)} = \frac{1}{2} + \frac{r^2}{12} + O(r^4), \quad r \to 0.$$

Metric functions are regular, positive and even with respect to r.The coordinate r is space-like everywhere. This makes it possible to interpret the solution as a wormhole, the size of which C(t,0) = ch t varies over time, taking the smallest value C = 1 at t = 0.

Thank you for attention!