Study of viscous-convection instabilities of thin laminar accretion flows

Konstantin Malanchev, Konstantin Postnov, Nikolay Shakura

Sternberg Astronomical Institute, MSU, Russia

ICPPA-2018, Moscow

Plan

- Accretion disks in the Universe
- Instabilities in accretion flows
- Vertical structure of accretion flow with microscopic viscosity in two cases of heat conductivity: electron/molecular and radiative

Accretion on supermassive black hole

Image by Double Negative, Warner Bros.

Standard theory of disk accretion

- 1969, Lynden-Bell D. *Galactic Nuclei as Collapsed Old Quasars.*
- 1973, Shakura N. I. & Sunyaev R. A. Black holes in binary systems. Observational appearance. (The most cited paper on theoretical astrophysics)
- 1973, Novikov I. D. & Thorne K. S. Astrophysics of black holes

Motivation

The Keplerian flow is highly stably due the classic Rayleigh criterion. So the physics of turbulence appearance in thin laminar Keplerian accretion flows is still under discussion.

- Magnetorotational instability (MRI) Balbus, S. A. & Hawley, J. F. (1991, 1998); originally was discovered by Velikhov (1959) and Chandrasekar (1960)
- Subcritical turbulence Lominadze et al. (1988), Razdoburdin & Zhuravlev (2012, 2014, 2015, 2017, 2018)
- Unstable modes in viscous sheared flows Shakura & Postnov (2015), Malanchev et al. (2016)

Structure of the disk with ionic viscosity

System of viscous hydrodynamics equations: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0 - \text{continuity equation},$ $\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u}\nabla) \cdot \boldsymbol{u} = -\frac{1}{\rho}\nabla p - \nabla \Phi + \boldsymbol{N} \text{ Navier-Stokes equation},$ $\frac{\rho \mathcal{R}T}{\mu} \left[\frac{\partial s}{\partial t} + (\boldsymbol{u}\nabla) \cdot \boldsymbol{s} \right] = Q_{\text{visc}} - \nabla \boldsymbol{F} - \text{energy equation}.$

Assumptions:

- Thin axisymmetric accretion disk
- Viscosity is described by microscopic processes

Vertical temperature distribution for electron heat conductivity

$$\frac{\rho \mathcal{R}T}{\mu} \left[\frac{\partial s}{\partial t} + (\mathbf{v}\nabla) \cdot s \right] = \frac{\mathrm{d}E_{\mathrm{visc}}}{\mathrm{d}t\,\mathrm{d}V} - \nabla \cdot Q$$

Axisymmetric case:

$$P\frac{\partial s}{\partial t} = \frac{\partial}{\partial z} \left(\kappa(T) \frac{\partial T}{\partial z}\right) + \eta(T) r^2 \left(\frac{\mathrm{d}\Omega}{\mathrm{d}r}\right)^2$$

In stationary case and assuming $\kappa(T) \sim T^a \& \eta(T) \sim T^b$:

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{a}{\theta} \left(\frac{\partial \theta}{\partial x}\right)^2 + B\theta^{b-a} = 0.$$

The solution is

$$x(\theta) = 1 - \theta^{a+1} \frac{{}_{2}F_{1}\left(\frac{1}{2}, \frac{a+1}{a+b+1}; \frac{2a+b+2}{a+b+1}; \theta^{a+b+1}\right)}{{}_{2}F_{1}\left(\frac{1}{2}, \frac{a+1}{a+b+1}; \frac{2a+b+2}{a+b+1}; 1\right)}$$

Vertical temperature distribution for electron heat conductivity

Vertical structure for radiation heat conductivity

$$\varkappa = \varkappa_c \frac{p^{\varsigma}}{\theta^{\varsigma + \psi}}, \eta = \eta_c \,\theta^b \, p^d$$

Vertical structure for radiation heat conductivity

Conclusions

- Radiation heat conductivity disks are highly convectively stable
- Electron (and molecular) heat conductivity disks are convectively unstable
 - Ionized accretion disks have convective upper layer
 - Molecular accretion disks should be fully convective unstable

Thank you for your attention