Spherically symmetric double layers and thin shells in Weyl + Einstein gravity

Victor Berezin

The work is done in collaboration with V. Dokuchaev, Yu. Eroshenko & A. Smirnov

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

I.1 General scheme

Preliminaries

 Thin shell = 3-dim hypersurface, where the energy-momentum tensor is concentrated

$$T_{\mu
u}{}_{ig|_{\Sigma}} = S_{\mu
u}\delta(\Sigma) \quad \Rightarrow \quad {\sf Dirac's} \,\, \delta{\sf -function}$$

Here we will consider only timelike shells

• Spherical symmetry \rightarrow simplest generalization of a point mass Main advantage — backreaction \rightarrow self-consistency Metric $(\mu, \nu = 0, 1, 2, 3)$, (i, k = 0, 1):

$$ds^{2}=g_{\mu\nu}dx^{\mu}dx^{\nu}=\gamma_{ik}dx^{i}dx^{k}-r^{2}(x)(d\theta^{2}+\sin^{2}\theta d\phi^{2})$$

Conformal transformation

$$ds^2 = \Omega^2 d\hat{s}^2 = r^2 \left(\tilde{\gamma}_{ik} dx^i dx^k - (d\theta^2 + \sin^2 \theta d\phi^2) \right)$$

• (2+2) — decomposition

I.2 Some formulae

• Riemann curvature tensor:

$$R^{\mu}_{
u\lambda\sigma}$$

Ricci tensor:

$$R^{\mu}_{
u}=R^{\lambda}_{\mu\lambda
u}$$

• Einstein tensor:

$$G_{\mu\nu}=R_{\mu\nu}-rac{1}{2}g_{\mu\nu}R$$

• Weyl tensor (completely traceless):

$$C_{\mu\nu\lambda\sigma} = R_{\mu\nu\lambda\sigma} + \frac{1}{2}(R_{\mu\sigma}g_{\nu\lambda} + R_{\nu\lambda}g_{\mu\sigma} - R_{\mu\lambda}g_{\nu\sigma} - R_{\nu\sigma}g_{\mu\lambda}) + \frac{1}{6}R(g_{\mu\nu}g_{\lambda\sigma} - g_{\mu\sigma}g_{\nu\lambda})$$

ullet Bach tensor: $B_{\mu
u} = C_{\mu \lambda
u \sigma}^{\ \ ; \sigma; \lambda} + rac{1}{2} R^{\lambda \sigma} C_{\mu \lambda
u \sigma}$

$$B_{\lambda}^{\lambda}=0,\quad B_{\mu
u}=B_{
u\mu},\quad B_{\mu;\lambda}^{\lambda}=0$$

1.3 Conformal transformation and (2+2) – decomposition

Einstein tensor

$$G_{\mu\nu} = \hat{G}_{\mu\nu} - \frac{2r_{\mu;\nu}}{r} + \frac{2r_{;\lambda}^{\lambda}r}{r}\hat{g}_{\mu\nu} + \frac{4r_{\mu}r_{\nu}}{r^{2}} - \frac{r^{\lambda}r_{\lambda}}{r^{2}}\hat{g}_{\mu\nu}$$

$$g_{\mu\nu} = r^{2}\hat{g}_{\mu\nu}, \quad g^{\mu\nu} = \frac{1}{r^{2}}\hat{g}^{\mu\nu}, \quad r_{\mu} = r_{,\mu}, \quad r^{\lambda} = \hat{g}^{\lambda\sigma}r_{,\sigma}$$

";" — covariant derivative with respect to $\hat{g}_{\mu
u}$

$$G_{ik} = -rac{2r_{i|k}}{r} + rac{4r_ir_k}{r^2} + \left(1 + rac{2r_{|p}^p}{r} - rac{r^pr_p}{r^2}\right)\tilde{\gamma}_{ik},$$

$$G = G_{\lambda}^{\lambda} = -R = -\frac{1}{r^2} \left(-\hat{R} + \frac{6r'_{|I|}}{r} \right), \quad \hat{R} = \tilde{R} - 2$$

 \tilde{R} — scalar curvature of 2-dim space-time with the metric $\tilde{\gamma}_{ik}$ "|" — covariant derivative with respect to $\tilde{\gamma}_{ik}$

I.4 Conformal transformation and (2+2) – decomposition

Bach tensor

$$\begin{split} B_{\mu\nu} &= \frac{1}{r^2} \hat{B}_{ik} \\ \hat{B}_{ik} &= -\frac{1}{6} \left(\tilde{R}^{|p}_{|p} \tilde{\gamma}_{ik} - \tilde{R}_{|ik} + \frac{\tilde{R}^2 - 4}{4} \tilde{\gamma}_{ik} \right) \\ \hat{B}^{\mu}_{\mu} &= 0 \qquad \Rightarrow \qquad \hat{B}^2_2 = \hat{B}^3_3 = -\frac{1}{2} \hat{B}^I_I \end{split}$$

1.5 Gauss normal coordinates

$$ds^2 = \Omega^2 d\hat{s}^2$$
, $d\hat{s}^2 = -dn^2 + g_{ij}dx^i dx^j$

Hypersurface Σ:

- n = 0
- Extrinsic curvature tensor:

$$\hat{K}_{ij} = -\frac{1}{2} \frac{\partial \hat{g}_{ij}}{\partial n}$$

Spherical symmetry ⇒

$$ds^{2} = r^{2} \left(\tilde{\gamma}_{ik} dx^{i} dx^{k} - (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right)$$
$$d\hat{s}_{2}^{2} = \tilde{\gamma}_{ik} dx^{i} dx^{k} = \tilde{\gamma}_{00}(\tau, n) d\tau^{2} - dn^{2}$$

 $\tilde{\gamma}_{00}(au,0)=1 \; \Rightarrow \; au$ — "conformal proper time" on the shell

$$\hat{K}_{00} = -\frac{1}{2} \frac{\partial \tilde{\gamma}_{00}}{\partial n} = \tilde{K}_{00}, \quad \tilde{K} = \tilde{K}_0^0 = -\frac{1}{2} \frac{\partial \log \tilde{\gamma}_{00}}{\partial n}$$

• 2 – dim scalar curvature: $\tilde{R} = -2\tilde{K}_n + 2\tilde{K}^2$

1.6 Energy-momentum tensor

$$\delta S_{
m matter} \stackrel{def}{=} rac{1}{2} \int T_{\mu
u} \sqrt{-g} \delta g^{\mu
u} dx$$

$$\delta S_{
m matter} \stackrel{def}{=} rac{1}{2} \int \hat{T}_{\mu
u} \sqrt{-\hat{g}} \delta \hat{g}^{\mu
u} dx$$

$$\hat{T}^{
u}_{\mu} = r^4 T^{
u}_{\mu}, \qquad \hat{T}^{\mu
u} = r^6 T^{\mu
u}$$

$$\hat{T}_{\mu\nu} = r^2 T_{\mu\nu}, \quad \hat{T}^{\nu}_{\mu} = r^4 T^{\nu}_{\mu}, \quad \hat{T}^{\mu\nu} = r^6 T^{\mu\nu}$$

$$\hat{T}_{\mu\nu} \stackrel{\text{def}}{=} \hat{S}_{\mu\nu}\delta(n) + [\hat{T}_{\mu\nu}]\Theta(n) + \hat{T}_{\mu\nu}^{(-)}$$

 $\hat{S}_{\mu
u}$ — surface energy-momentum tensor

$$\delta(n)$$
 — Dirac's δ -function

$$\Theta(n)$$
 — Heaviside step function

$$\Theta(n) = \begin{cases} 1, & \text{if } n > 0 \ (+) \\ 0, & \text{if } n < 0 \ (-) \end{cases}$$

$$\Theta^{2} = \Theta, \quad \Theta'(n) = \delta(n)$$

$$[\ldots] = \text{"jump"} \quad \Rightarrow \quad [\hat{T}_{\mu\nu}] = [\hat{T}_{\mu\nu}^{(+)} - \hat{T}_{\mu\nu}^{(-)}]$$

I. General Scheme

The End of Chapter I

(to be continued)

II. Quadratic Gravity

- A.D. Sakharov (1967)
- Induced gravity, conformal anomaly, particle creation (L. Parker,
- S. Fulling, Y.B. Zel'dovich, A.A. Starobinskii, ...).
- Lagrangian:

$$\left(\alpha R_{\mu\nu\lambda\sigma}R^{\mu\nu\lambda\sigma} + \beta R_{\mu\nu}R^{\mu\nu} + \gamma R^2 - \frac{1}{16\pi G}(R - 2\Lambda)\right)\sqrt{-g}$$

ullet Singular hypersurface Σ (n=0 in Gaussian normal coordinates),

$$T_{\mu\nu} = S_{\mu\nu}\delta(n) + [T_{\mu\nu}]\theta(n) + T_{\mu\nu}^{(-)}.$$

• General matching conditions – Senovilla et al.

Main difference from GR:

Scalar curvature R may have only a jump at Σ (no term $\sim \delta(n) \Rightarrow \delta^2(n)$) in quadratic terms). The extrinsic curvature tensor

$$K_{\mu\nu} = -rac{1}{2}rac{\partial g_{\mu
u}}{\partial n}$$

must be continuous on Σ :

$$[K_{\mu\nu}]=0.$$

In the presence of the thin shell in $T_{\mu\nu}$ ($S_{\mu\nu} \neq 0$) there is no smooth transition from a quadratic gravity to General Relativity. Instead – we may have the double layer ($\sim \delta'(n)$ term in the second derivative of R).

Because of the absence of the corresponding counterpart in $T_{\mu\nu}$ (no mass dipoles), the double layer is of pure geometric origin. It can be considered as the gravitational shock wave.

II. Quadratic Gravity

The End of Chapter II

(to be continued)

III. Weyl + Einstein gravity

- All the quadratic terms are combined in C^2 .
- Motivations:

We are interested in the creation of universe "from nothing" (A. Vilenkin, ...) \Rightarrow extra symmetry.

We are interesting in particle creation during the cosmological evolution \Rightarrow

$$(Nu^{\mu})_{;\mu} = \beta C^2$$

(fundamental result by Y.B. Zel'dovich and A.A. Starobinsky, 1977)

• Phenomenological description

$$S_{
m matter} = S_{
m hydro} + S_{
m creation}$$

$$\begin{split} S_{\rm hydro} &= -\int \varepsilon(\textit{N}) \sqrt{-g} \, dx + \int \lambda_0 (\textit{u}^\mu \textit{u}_\mu - 1) \sqrt{-g} \, dx + \int \lambda_2 \textit{X}_{,\mu} \textit{u}^\mu \sqrt{-g} \, dx \\ S_{\rm creation} &= \int \lambda_1 \left((\textit{N} \textit{u}^\mu)_{;\mu} - \beta \textit{C}^2 \right) \sqrt{-g} \, dx \end{split}$$

If
$$\lambda_1=+\alpha_0+\tilde{\lambda}_1\Longrightarrow$$

$$-\int \frac{\alpha_0}{\beta}(Nu^\mu)_{;\mu}\sqrt{-g}dx = \text{surface integral}$$

That is, the Weyl term

$$-\alpha_0 \int C^2 \sqrt{-g} dx$$
 is already there

$$S_{
m tot} = \int eta \lambda_1 C^2 \sqrt{-g} dx - rac{1}{16\pi G} \int (R-2\Lambda) \sqrt{-g} dx + S_{
m hydro}$$

• Field equations:

$$8\pi B_{\mu\nu}[\lambda_1] + \frac{1}{8\pi G}(G_{\mu\nu} - \Lambda g_{\mu\nu}) = T_{\mu\nu}$$

Modified Bach tensor

$$B[\lambda_1] = (\lambda_1 C_{\mu\sigma\nu\lambda})^{;\lambda;\sigma} + \frac{1}{2} \lambda_1 C_{\mu\lambda\nu\sigma} R^{\lambda\sigma}$$

 $G_{\mu\nu}$ – Einstein tensor $g_{\mu\nu}$ – metric tensor

$$T_{\mu\nu} = T_{\mu\nu}^{
m hydro} = (\varepsilon + p)u_{\mu}u_{\nu} - pg_{\mu\nu}$$

• Conformal transformation:

$$ds^2=g_{\mu
u}dx^\mu dx^
u=\Omega^2 d\hat{s}^2=\Omega^2 \hat{g}_{\mu
u}dx^\mu dx^
u$$
 $g_{\mu
u}=\Omega^2 \hat{g}_{\mu
u}; \quad g^{\mu
u}=rac{1}{\Omega^2} \hat{g}^{\mu
u}$ $B_{\mu
u}[\lambda_1]=rac{1}{\Omega^2} \hat{B}_{\mu
u}[\lambda_1]$

Spherical symmetry:

$$\Omega^2 = r^2$$

$$ds^2 = r^2 \left(\tilde{\gamma}_{ik} dx^i dx^k - (d\theta^2 + \sin^2 \theta d\phi^2) \right)$$

i = 0, 1

$$d\tilde{s}_2^2 = \tilde{\gamma}_{ik} dx^i dx^k$$
; \tilde{R} – two-dim curvature

• Gauss normal coordinate system:

$$d\tilde{s}_{2}^{2} = \tilde{\gamma}_{00}(\tau, n)d\tau^{2} - dn^{2}; \quad \tilde{\gamma}_{00}(\tau, 0) = 1.$$

n = 0 – time-like singular hypersurface Σ (just the world-line)

• Field equations: (|| – covariant derivative with respect $\tilde{\gamma}_{ik}$)

$$\frac{4}{3}\beta \left\{ (\lambda_{1}(\tilde{R}-2))_{||p}^{||p}\tilde{\gamma}_{ik} - (\lambda_{1}(\tilde{R}-2))_{||ik} + \lambda_{1}\frac{\tilde{R}^{2}-4}{4}\tilde{\gamma}_{ik} \right\}
+ \frac{1}{8\pi G} \left\{ r^{2}(1+\Lambda r^{2})\tilde{\gamma}_{ik} - 2r(r_{||ik} - r_{||p}^{||p}\tilde{\gamma}_{ik}) + 4r_{i}r_{k} - r_{p}r^{p}\tilde{\gamma}_{ik} \right\}
= \tilde{T}_{ik} \quad i, k = 0, 1$$

(trace)

$$2 - \tilde{R} + \frac{6r_{||p}^{||p}}{r} = 4\Lambda r^2 + \frac{8\pi G}{r^2} (\hat{T}_p^p + 2\hat{T}_2^2)$$
$$\hat{T}_{\mu\nu} = \hat{S}_{\mu\nu}\delta(n) + [\hat{T}_{\mu\nu}]\theta(n) + \hat{T}_{\mu\nu}^{(-)}$$
$$[] = (+) - (-)$$

(00)

$$\frac{4}{3}\beta \left\{ -(\lambda_1(\tilde{R}-2))_{||nn}\tilde{\gamma}_{00} + \lambda_1\frac{\tilde{R}^2 - 4}{4} \right\} + \frac{1}{8\pi G} \left\{ r^2(1 - \Lambda r^2)\tilde{\gamma}_{00} + 3\dot{r}^2 + r_n^2\tilde{\gamma}_{00} \right\} = \hat{T}_{00}$$
(0n)

$$-\frac{4}{3}\beta(\lambda_1(\tilde{R}-2))_{||0n} + \frac{1}{8\pi G} \left\{ -2rr_{||0n} + 4\dot{r}r_n \right\} = \hat{T}_{0n}$$

(nn)

$$\begin{split} -\frac{4}{3}\beta \left\{ (\lambda_1(\tilde{R}-2))_{||00}\tilde{\gamma}^{00} + \lambda_1\frac{\tilde{R}^2-4}{4} \right\} - \\ -\frac{1}{8\pi G} \left\{ r^2(1-\Lambda r^2) + 2r\tilde{\gamma}^{00}r_{||00} - \tilde{\gamma}^{00}\dot{r}^2 - 3r_n^2 \right\} = \hat{T}_{nn} \end{split}$$
 (trace)

$$2 - \tilde{R} + \frac{6}{r} (\tilde{\gamma}^{00} r_{||00} - r_{||nn}) = 4\Lambda r^2 + \frac{8\pi G}{r^2} (\hat{T}_0^0 + \hat{T}_n^n + 2\hat{T}_2^2)$$

Extrinsic curvature:

$$\tilde{K}_{ij} = -\frac{1}{2}\tilde{\gamma}_{ij,n} \Rightarrow$$

$$\tilde{K}_{00} = -\frac{1}{2}\tilde{\gamma}_{00,n}, \quad \tilde{K} = -\frac{1}{2}\tilde{\gamma}^{00}\tilde{\gamma}_{00,n}$$

$$\tilde{R} = -2\tilde{K}_{,n} + 2\tilde{K}^{2}$$

III. Weyl + Einstein gravity

The End of Chapter III

(to be continued)

IV. Double layer:

Appears if
$$[\tilde{R}] \neq 0 \ (n = 0) \Rightarrow$$
 $[\tilde{K}] = 0$ Only in (00) - equation

• Matching conditions:

$$\frac{4}{3}\beta \left\{ -[(\lambda_{1}(\tilde{R}-2))_{,n}] + \frac{f(\tau)}{f(\tau)}[\lambda_{1}(\tilde{R}-2)] \right\} - \frac{1}{4\pi G}r[r_{n}] = \hat{S}_{0}^{0}$$

$$\frac{4}{3}\beta [(\lambda_{1}(\tilde{R}-2))^{\cdot}] = \hat{S}_{0}^{n}$$

$$\frac{4}{3}\beta \tilde{K}[\lambda_{1}(\tilde{R}-2)] = \hat{S}_{n}^{n}$$

$$-\frac{3r}{4\pi G}[r_{,n}] = \hat{S}_{0}^{0} + \hat{S}_{n}^{n} + 2\hat{S}_{2}^{2}$$

 \hat{S}^n_0 - ?, \hat{S}^n_n - ? (Senovilla) ($\hat{S}^n_0 = \hat{S}^n_n = 0$ in General Relativity).

 $f(\tau)$ – arbitrary function (where from?)

$$\alpha_{1}\delta'(n) + \beta_{1}\delta(n) + \dots = \beta_{2}\delta(n) + \dots \Rightarrow$$

$$\phi(\tau, n) (\alpha_{1}\delta'(n) + \beta_{1}\delta(n) + \dots) = \phi(\tau, n)(\beta_{2}\delta(n) + \dots)$$

$$\phi(\tau, 0) \neq 0$$

$$-(\phi_{,n}\alpha_{1} + \phi\alpha_{1,n} + \phi\beta_{1}) = \phi(\tau, 0)\beta_{2} \Rightarrow$$

$$-\frac{\phi_{,n}}{\phi}\alpha_{1} + \alpha_{1,n} + \beta_{1} = \beta_{2} \Rightarrow f(\tau)$$

But, it is not the end of the story:

$$(00) = \hat{T}_{00}$$
$$\binom{0}{0} = \tilde{\gamma}^{00} \hat{T}_{00} = \hat{T}_{0}^{0}$$

– extra term $\sim \tilde{\gamma}_{00,n} \Rightarrow \sim \tilde{K}$ to avoid such an ambiguity: $\tilde{K}(\tau,0) = 0$ (!!!)

Final version:

$$2\beta \left\{ -[(\lambda_1(\tilde{R}-2))_{,n}] + \frac{f(\tau)}{[\lambda_1(\tilde{R}-2)]} \right\} = \hat{S}_0^0 - \hat{S}_2^2$$

$$\frac{4}{3}\beta[(\lambda_1(\tilde{R}-2))^{\cdot}] = \hat{S}_0^n$$

$$\hat{S}_n^n = 0; \quad \tilde{K} = 0$$

$$-\frac{3r}{4\pi G}[r_{,n}] = \hat{S}_0^0 + 2\hat{S}_2^2$$

• Continuity equation:

$$\dot{\hat{S}}_0^0 - \frac{4}{3}\beta \left(f(\tau)[\lambda_1(\tilde{R} - 2)] \right) - \frac{\dot{r}}{r}(\hat{S}_0^0 + 2\hat{S}_2^2) + [T_0^n] = 0$$

IV. Double layer

The End of Chapter IV

(to be continued)

V. Toy model

• Universe is created from nothing.

Empty and with maximal symmetry.

Homogeneous and isotropic apace-time \Rightarrow

Weyl tensor is zero, $C_{\mu\nu\lambda\sigma} = 0 \Rightarrow \tilde{R} = 2$.

Conformal to the (anti)de Sitter manifold.

- ullet Subsequent evolution fluctuations with $\tilde{R} \neq 2 \Rightarrow$ particle creation.
- No thin shells $(\sim \delta(n))$ only double layer $(\sim \delta'(n))$ at the boundary n=0.
- Matching conditions become

$$2\beta \left\{ -[(\lambda_1(\tilde{R}-2))_{,n}] + f(\tau)[\lambda_1(\tilde{R}-2)] \right\} = 0$$

$$\frac{4}{3}\beta[(\lambda_1(\tilde{R}-2))^{\cdot}] = 0$$

$$f(\tau) = f_0 = const$$

$$\tilde{K} = 0$$

- Further simplification: pure Weyl gravity $(G \to \infty)$
- The view from inside $(n \le 0)$
- Energy-momentum tensor is necessarily traceless $\Rightarrow \varepsilon = 3p$,

$$\varepsilon = \mu_0 N^{4/3}$$
$$Y = Nr^3$$

N - invariant particle number density,

r – radius

At the boundary (n = 0 - 0)

$$\lambda_1(ilde{R}-2)=A=const$$
 matching condition $Y^{1/3}=-rac{3}{4\mu_0}rac{d\lambda_1}{d au}$ hydrodynamics $Y^{4/3}=-rac{eta}{\mu_0}A(ilde{R}+2)$ Bach equations

$$\frac{d\tilde{R}}{d\tau} = \frac{4\mu_0(\tilde{R}-2)^2}{3A} \left(-\frac{\beta}{\mu_0} A(\tilde{R}+2)\right)^{1/4}$$
$$\lambda_1 = \frac{A}{\tilde{R}-2}$$
$$Y^{4/3} = -\frac{\beta}{\mu_0} A(\tilde{R}+2)$$

• Three types of solutions:

1.
$$\tilde{R} < -2 \Rightarrow \frac{\beta}{\mu_0} A > 0 \Rightarrow d\tilde{R}/d\tau > 0 \Rightarrow Y \to 0 \Rightarrow r \to 0$$

2.
$$-2 < \tilde{R} < 2 \Rightarrow \frac{\beta}{\mu_0} A < 0 \Rightarrow d\tilde{R}/d\tau < 0 \Rightarrow Y \rightarrow 0 \Rightarrow r \rightarrow 0$$

Punctured vacuum!

3.
$$\tilde{R} > 2 \Rightarrow \frac{\beta}{\mu_0} A < 0 \Rightarrow d\tilde{R}/d\tau < 0 \Rightarrow \tilde{R} \rightarrow +2$$
 $Y \rightarrow const$

Isotropization (Y.B. Zel'dovich)

V. Toy model

The End of Chapter V

(to be continued)

The End

Thanks to all