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Scalar �elds in gravitational physics

Scalar �elds in gravitational physics:

gravitational potential in Newtonian gravity

variation of \fundamental" constants

Brans-Dicke theory initially elaborated to solve the Mach problem

various compacti�cation schemes

the low-energy limit of the superstring theory

scalar �eld as in
aton

scalar �eld as dark energy and/or dark matter

fundamental Higgs bosons, neutrinos, axions, . . .

etc. . .
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Horndeski theory

In 1974, Horndeski derived the action of the most general scalar-tensor
theories with second-order equations of motion
[G.Horndeski, Second-Order Scalar-Tensor Field Equations in a

Four-Dimensional Space, IJTP 10, 363 (1974)]

Horndeski Lagrangian:

LH =
p�g (L2 + L3 + L4 + L5)

L2=G2(X;�) ;

L3=G3(X;�)�� ;

L4=G4(X;�)R+ @XG4(X;�) �
��
�� r�

��r�
�� ;

L5=G5(X;�)G��r���� 1
6 @XG5(X;�) �

���
��
 r�

��r�
��r


�� ;

where X = � 1
2 (r�)2, and Gk(X;�) are arbitrary functions,

and ����� = 2! ��[��
�
�], ������� = 3! ��[��

�
��

�
�]
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Fab Four subclass of the Horndeski theory

There is a special subclass of the theory, sometimes called Fab Four (F4),
for which the coe�cients are chosen such that the Lagrangian becomes

LF4 =
p�g (LJ + LP + LG + LR � 2�)

with

LJ=VJ(�)G��r��r�� ;

LP=VP (�)P����r��r��r��� ;

LG=VG(�)R ;
LR=VR(�) (R����R

���� � 4R��R
�� +R2):

Here the double dual of the Riemann tensor is

P��
�� = �1

4
���
����� R

��

� = �R��

�� + 2R�
[��

�
�] � 2R�

[��
�
�] �R��[����] ;

whose contraction is the Einstein tensor, P��
�� = G�

� .
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Fab Four subclass of the Horndeski theory

Fab Four Lagrangian:

LF4 =
p�g (LJ + LP + LG + LR � 2�)

The Fab Four model is distinguished by the screening property { it is
the most general subclass of the Horndeski theory in which 
at
space is a solution, despite the presence of the cosmological term �.

This property suggests that � is actually irrelevant and hence there
is no need to explain its value.

Indeed, however large � is, Minkowski space is always a solution and
so one may hope that a slowly accelerating universe will be a
solution as well.
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Theory with nonminimal kinetic coupling

Action:

S =
1

2

Z
d4x
p�g �M2

PlR� (" g�� + � G��)r��r��� 2V (�)
�
+ Sm

Field equations:

M2
PlG�� = T (�)

�� + ���� + T (m)
��

[�g�� + �G�� ]r�r�� = V 0�

T (�)
�� =�

�r��r��� 1
2
g��(r�)2

�� g��V (�);
���=� 1

2
r��r��R+ 2r��r(��R

�
�) � 1

2
(r�)2G�� +r��r��R����

+r�r��r�r���r�r����+ g��
�� 1

2
r�r��r�r��+

1
2
(��)2

�r��r��R
��
�

T (m)
�� =(�+ p)U�U� + pg�� ;

Notice: The �eld equations are of second order!
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Cosmological models: General formulas

Ansatz:

ds2 = �dt2 + a2(t)dx2;

� = �(t)

a(t) cosmological factor, H = _a=a Hubble parameter

Field equations:

3M2
PlH

2 =
1

2
_�2
�
�� 9�H2

�
+ V (�);

M2
Pl(2

_H + 3H2) = �1

2
_�2
h
�+ �

�
2 _H + 3H2 + 4H �� _��1

�i
+ V (�);

d

dt

�
(�� 3�H2)a3 _�

�
= �a3 dV (�)

d�

V (�) � const =) _� =
Q

a3(�� 3�H2)
Q is a scalar charge
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Cosmological models: I. No potential V (�) � 0

Trivial model without kinetic coupling, i.e. � = 0

S =
1

2

Z
d4x
p�g �M2

PlR� (r�)2�

Solution:

a0(t) = t1=3; �0(t) =
1

2
p
3�

ln t

ds20 = �dt2 + t2=3dx2

t = 0 is an initial singularity
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Cosmological models: II. No potential V (�) � 0

Model without free kinetic term, i.e. � = 0

S =
1

2

Z
d4x
p�g �M2

PlR� �G���;��;�
�

Solution:

a(t) = t2=3; �(t) =
t

2
p
3�j�j ; � < 0

ds20 = �dt2 + t4=3dx2

t = 0 is an initial singularity
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Cosmological models: III. No potential V (�) � 0

Model for an ordinary scalar �eld (� = 1) with
nonminimal kinetic coupling � 6= 0

S =
1

2

Z
d4x
p�g �M2

PlR� (g�� + �G��)�;��;�
�

Asymptotic for t!1:

a(t) � a0(t) = t1=3; �(t) � �0(t) =
1

2
p
3�

ln t

Notice: At large times the model with � 6= 0 has the same behavior like

that with � = 0
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Cosmological models: III. No potential V (�) � 0

Asymptotics for early times

The case � < 0:

at!0 � t2=3; �t!0 � t

2
p
3�j�j

ds2t!0 = �dt2 + t4=3dx2

t = 0 is an initial singularity

The case � > 0:

at!�1 � eH�t; �t!�1 � Ce�t=
p
�

ds2t!�1 = �dt2 + e2H�tdx2

de Sitter asymptotic with H� = 1=
p
9�
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Cosmological models: III. No potential V (�) � 0

Plots of � = ln a in case � 6= 0, � = 1, V = 0.

(a) � < 0;
� = 0;�1;�10;�100

(b) � > 0;
� = 0; 1; 10; 100

De Sitter asymptotics: �(t) =
tp
9�

) H =
1p
9�

Notice: In the model with nonmnimal kinetic coupling one
get de Sitter phase without any potential!
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Cosmological models: IV. Cosmological constant

Models with the constant potential V (�) = M2

Pl
� = const

S =

Z
d4x
p�g �M2

Pl(R� 2�)� [�g�� + �G�� ]�;��;�
�

There are two exact de Sitter solutions:

I. �(t) = H�t; �(t) = �0 = const;

II. �(t) =
tp
3j�j ; �(t) =MPl

����3�H
2
� � 1

�

����
1=2

t;

H� =
p
�=3
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Cosmological models: IV. Cosmological constant

Plots of �(t) in case � > 0, � = 1, V =M2
Pl�

(a) H2
� < _�2 < 1=9� (b) 1=9� < _�2 < 1=3� < H2

�

De Sitter asymptotics:
�1(t) = H�t (dashed),

�2(t) = t=
p
9� (dash-dotted),

�3(t) = t=
p
3� (dotted).
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Role of potential

S =

Z
d4x
p�g �M2

PlR� [g�� + �G�� ]�;��;� � 2V (�)
	

%

What a role does a potential play in cosmological
models with the nonminimal kinetic coupling?
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Power-law potential V (�) = V0�
N

Skugoreva, Sushkov, Toporensky, PRD 88, 083539 (2013)

Models with the quadratic potential V (�) = 1

2
m2�2

Primary (early-time) \kinetic" in
ation:

Ht!�1 � 1p
9�

(1 + 1
2�m

2)

Late-time cosmological scenarios:
Oscillatory asymptotic or \graceful" exit from in
ation

Ht!1 � 2

3t

�
1� sin 2mt

2mt

�

quasi-de Sitter asymptotic or secondary in
ation

Ht!1 � 1p
3�

�
1�

q
1
6�m

2

�
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Cosmological models: Power-law potential

Initial conditions

�0 = _�0

Initial conditions

�0 = � _�0

De Sitter asymptotics: Ht!�1 � 1=
p
9�(1 + 1

2
�m2),

Ht!1 � 1=
p
3�

�
1�

q
1
6
�m2

�
.
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Screening properties of Horndeski model:

Starobinsky, Sushkov, Volkov, JCAP, 2015

The FLRW ansatz for the metric:

ds2 = �dt2 + a2(t)

�
dr2

1�Kr2 + r2(d#2 + sin2 #d'2)

�
;

a(t) cosmological factor, H = _a=a Hubble parameter

Gravitational equations:

�3M2
Pl

�
H2 +

K

a2

�
+

1

2
" 2 � 3

2
�  2

�
3H2 +

K

a2

�
+ �+ � = 0;

�M2
Pl

�
2 _H + 3H2 +

K

a2

�
� 1

2
" 2 � �  2

�
_H +

3

2
H2 � K

a2
+ 2H

_ 

 

�
+ �� p = 0:

The scalar �eld equation:

1

a3
d

dt

�
a3
�
3�

�
H2 +

K

a2

�
� "

�
 

�
= 0;

where  = _�, and � = �(t) is a homogeneous scalar �eld

Sergey Sushkov Perturbations in Horndeski Cosmology 19 / 37



���

Screening properties of Horndeski model

The �rst integral of the scalar �eld equation:

a3
�
3�

�
H2 +

K

a2

�
� "

�
 = Q;

where Q is the Noether charge associated with the shift symmetry
�! �+ �0.

Let Q = 0. One �nds in this case two di�erent solutions:

GR branch:  = 0 =) H2 +
K

a2
=

�+ �

3M2
Pl

Screening branch: H2 +
K

a2
=

"

3�
=)  2 =

� (� + �)� "M2
Pl

� ("� 3� K=a2)

NOTICE: The role of the cosmological constant in the screening solution
is played by "=3� while the �-term is screened and makes no contribution
to the universe acceleration.

Note also that the matter density � is screened in the same sense.
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Screening properties of Horndeski model

Let Q 6= 0, then

 =
Q

a3
�
3� (H2 + K

a2 )� "
� ;

and the modi�ed Friedmann equation reads

3M2
Pl

�
H2 +

K

a2

�
=
Q2

�
"� 3�

�
3H2 + K

a2

��
2a6

�
"� 3� (H2 + K

a2 )
�2 + �+ �:

Introducing dimensionless values and density parameters

H2 = H2
0 y; a = a0 a ; �cr = 3M2

PlH
2
0 ; � =

"

3� H2
0

;


0 =
�

�cr
; 
2 = � K

H2
0a

2
0

; 
6 =
Q2

6� a60H
2
0 �cr

; � = �cr

�

4

a4
+


3

a3

�

gives

the master equation:

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2
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Asymptotical behavior: Late time limit a!1

GR branch:

y = 
0 +

2

a2
+


3

a3
+


4

a4
+

(� � 3
0) 
6

( 
0 � �)2 a6 +O
�

1

a7

�
=) H2 ! �=3

Notice: The GR solution is stable (no ghost) if and only if � > 
0.

Screening branches:

y� = �+

2

a2
� �

( 
0 � �) a3 �

2
6

�a5
� 
6(� � 3
0)� 
3�

2(
0 � �)2 a6 +O
�

1

a7

�

=) H2 ! "=3�

Notice: The screening solutions are stable (no ghost) if and only if
0 < � < 
0.
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Asymptotical behavior: The limit a! 0

GR branch:

y =

4

a4
+


3

a3
+


2
4 � 3
6


4a2
+

3
3
6


4a
+O(1)

Notice: The GR solution is unstable

Screening branch:

y+=
3
6


4 a2
� 3
3
6


2
4 a

+
5

3
� +

3
6

2
3 + 9
2

6


3
4

+O(a);

y�=
1p
9�

+
4 �2

27 
6

�

4 a

2 +
3 a
3
�
+O(a4)

Notice: Both screening solutions are stable
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Global behavior

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2

�

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Solutions y(a) for 
0 = 
6 = 1, 
2 = 0, 
3 = 
4 = 0 and for � = 6
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Global behavior

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2

�

�

��

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Solutions y(a) for 
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3 = 
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Global behavior

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2

�

�

�

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

Solutions y(a) for 
0 = 
6 = 1, 
3 = 5, 
4 = 0, � = 0:2. One has 
2 = 0.
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Intermediate Summary

The nonminimal kinetic coupling provides an essentially new

in
ationary mechanism which does not need any �ne-tuned
potential.

At early cosmological times the coupling �-terms in the �eld
equations are dominating and provide the quasi-De Sitter behavior
of the scale factor: a(t) / eH�t with H� = 1=

p
9�.

The model provides a natural mechanism of epoch change without
any �ne-tuned potential.

The nonminimal kinetic coupling crucially changes a role of the
scalar potential. Power-law and Higgs-like potentials with kinetic
coupling provide accelerated regimes of the Universe evolution.

Sergey Sushkov Perturbations in Horndeski Cosmology 27 / 37



���

Perturbations

Scalar perturbations (Newtonian gauge):

ds2 = �(1 + 2	)dt2 + a2(t)(1 + 2�)�ijdx
idxj ;

� = �0 + �� = �0(1 + ');

	(t;x)� 1; �(t;x)� 1; '(t;x)� 1

Fourier trasformations: 	(t;x) =
R
dkeikx	(t;k) and so on

Scalar modes:

�3H( _	�H�)� k2

a2
	 = 4�

�
_�2�� _�� _�

+�

�
9H _�2 _	� 18H2 _�2�+

k2

a2
_�2	+ 9H2 _�� _�+ 2

k2

a2
H _���

��
;

_	�H� = 4�
h
� _���+ �

�
3H _�2�� _�2 _	� 2H _�� _�+ 3H2 _���

�i
;

�+	 = �4��
h
_�2(��	) + 2(��+H _�)��

i

Notice: 	 = �� if � = 0, but generally 	 6= �� !
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Perturbations in the in
ationary epoch

On the in
ationary stage at t! �1 the unperturbed solutions are

a(t) = aie
H�(t�ti); �(t) = �ie

�3H�(t�ti); H� =
1p
9�

Scalar perturbations on the in
ationary stage

_	=H��� 1

12H�

k2

a2
(7	 + 3�);

_�=�H�(6	 + 7�) +
1

4H�

k2

a2
(7	 + 3�): a = aie

H�(t�ti)
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Perturbations in the in
ationary epoch

Limiting cases:

A. k=a� H� (modes outside the Hubble horizon)

Scalar perturbations of metric:

_	=H��� 1

12H�

k2

a2
(7	 + 3�);

_�=�H�(6	 + 7�)+
1

4H�

k2

a2
(7	 + 3�): a = aie

H�(t�ti)

	= 1
5 (6	i +�i)e

�H�(t�ti) � 1
5 (	i +�i)e

�6H�(t�ti);

�=� 1
5 (6	i +�i)e

�H�(t�ti) + 6
5 (	i +�i)e

�6H�(t�ti);

	i = 	(ti)� 1; �i = �(ti)� 1; t = ti { beginning of in
ation

Perturbs in course of in
ation t > ti: 	 = �� � e�H�t � a�1

NOTICE: Scalar modes k=a� H� are exponentially decaying!
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Perturbations in the in
ationary epoch

B. k=a� H� (modes inside the Hubble horizon)

Scalar perturbations of metric:

_	=H��� 1

12H�

k2

a2
(7	 + 3�);

_�=�H�(6	 + 7�)+
1

4H�

k2

a2
(7	 + 3�): a = aie

H�(t�ti)

	= 3
2
(3	i +�i)� 3

2
( 7
3
	i +�i) exp

�
1
12

�
k
H�

�2 �
1
a2
i

� 1
a2

��
;

�=� 7
2
(3	i +�i) +

9
2
( 7
3
	i +�i) exp

�
1
12

�
k
H�

�2 �
1
a2
i

� 1
a2

��
;

Perturbs in course of in
ation t > ti (1=a
2
i � 1=a2):

	; �! exp

�
1
12

�
k

aiH�

�2�
� 1

NOTICE: Scalar modes k=a� H� are growing!
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Perturbations in the in
ationary epoch

TENDENCY: During the in
ation, modes with short wavelength are
stretching and come beyond the Hubble horizon. After they have gone
outside the Hubble horizon, they are exponentially decaying.

Examples of numerical analysis for scalar mode evolution:

Longwave modes Shortwave modes
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Tensor perturbations

Tensor perturbations:

ds2 = �dt2 + a2(t)(�ij + hij)dx
idxj ;

@ihij = 0; hii = 0:

Two polarizations: hij �! h+; h�

Equation for tensor modes

(1 + 4�� _�2)�h+
�
3H + 4��(2 _���+ 3H _�2)

�
_h+

k2

a2
(1� 4�� _�2)h = 0
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Tensor perturbations during the kinetic in
ation

Tensor perturbation on the in
ationary stage:

�
1 + 4��2i e

�6H�(t�ti)
�
�h+ 3H�

�
1� 4��2i e

�6H�(t�ti)
�
_h

+
k2

a2

�
1� 4��2i e

�6H�(t�ti)
�
h=0

a(t) = aie
H�(t�ti); �(t) = �ie

�3H�(t�ti)

The case 4��2i � 1:

�h+ 3H�
_h+

k2

a2
h = 0

A. k=a� H� (outside the Hubble horizon) ) constant modes

B. k=a� H� (inside the Hubble horizon) ) damping oscillating modes
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Tensor perturbations during the kinetic in
ation

The case 4��2i � 1: �h� 3H�
_h� k2

a2
h = 0

A. k=a� H� modes outside the Hubble horizon

�h� 3H�
_h = 0 =) h / e3H�t =) exponentially growing!

B. k=a� H� modes inside the Hubble horizon

�h� k2

a2
h = 0 =) h / e�ke

�H�t=H� =) constant modes
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Final conclusions

Long-wave scalar modes k=a� H� are exponentially decaying
during the kinetic in
ation. Therefore, the large-scale structure of
the Universe keeps to be homogeneous and isotropic.

Short-wave scalar modes k=a� H� are growing during the narrow
time interval when k=a � H�. At this moment seeds for the
Universe structure (clasters, galaxies, etc) could be formed.
However, this is a regime of nonlinear perturbations, and hence one
needs a nonperturbative analysis.
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THANKS FOR YOUR ATTENTION!
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