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Reliable astronomical data support the existence of four epochs of the
Universe global evolution:

I inflation,

I a radiation dominated era,

I a matter dominated one

I the present dark energy epoch.

Initial inflation and dark energy domination are both characterized by an
accelerated expansion of the Universe with almost constant Hubble
parameter H.
The other epochs of the Universe evolution are described by power-law
solutions with H = J/t, where J is a positive constant.
In General Relativity, power-law solutions with H = J/t correspond to
models with a perfect fluid whose EoS parameter reads
wm = −1 + 2/(3J).
The radiation dominated epoch corresponds to solutions with J = 1/2,
whereas the matter dominated one corresponds to J = 2/3.
When one addresses the issue to consider new modified gravity models, it
is therefore important to check for the existence of de Sitter and
power-law solutions in the discussed models.
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MODIFIED GRAVITY MODELS

There are two basic motivations which lead cosmologists to modify
gravity. The first one is an attempt to connect gravity with quantum
physics, at least in a perturbative way, by including quantum correction
terms to Einstein’s equations. The second is an interest to describe the
Universe evolution in a more natural way, without the dark energy and
the dark matter components, which turn out to be avoidable in the
modified models.
There are lots of ways to deviate from Einstein’s gravity:

I F (R) gravity

I Addition of higher-derivative terms to the Einstein–Hilbert action

I Non-local gravity
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Non-local models with inverse d’Alembertian

The following class of nonlocal gravity models has been proposed to
explain current cosmic acceleration without dark energy1:

S2 =

∫
d4x
√
−g

{
MPl

2

2

[
R
(
1 + f (�−1R)

)
− 2Λ

]
+ Lm

}
(1)

Here f is a differentiable function, Λ is the cosmological constant,
Lm is the matter Lagrangian, � is covariant d’Alembertian for a scalar
field.

�A ≡ 1√
−g

∂ρ
(√
−g gρσ∂σ

)
A.

1S. Deser, R.P. Woodard, Phys. Rev. Lett. 99 (2007) 111301, arXiv:0706.2151



The nonlocal action (1) can be rewritten in the ”localized” form by
introducing two scalar fields η and ξ:

S̃2 =

∫
d4x

√
−g

16πGN
{[R (1 + f (η)) + ξ (�η − R)− 2Λ] + Lm} . (2)

By the variation over ξ, we obtain �η = R.
Substituting η = �−1R into (2), one reobtains action (1).

S. Nojiri, S.D. Odintsov, Phys. Lett. B 659 (2008) 821, arXiv:0708.0924

We studied the de Sitter and power-low solutions of this model
E. Elizalde, E. O. Pozdeeva and S. Y. Vernov, Phys. Rev. D 85 (2012)
044002, [arXiv:1110.5806 [astro-ph.CO]].
E. Elizalde, E. O. Pozdeeva and S. Y. Vernov, Class. Quant. Grav. 30
(2013) 035002 [arXiv:1209.5957 [astro-ph.CO]].
E. Elizalde, E. O. Pozdeeva, S. Y. Vernov and Y. l. Zhang, JCAP 1307
(2013) 034 [arXiv:1302.4330 [hep-th]].



Non-local models with the Gauss–Bonnet term

Non-local models with the Gauss-Bonnet term have been proposed in
S. Capozziello, E. Elizalde, S. Nojiri, and S.D. Odintsov, Phys. Lett. B
671 (2009) 193, [arXiv:0809.1535],
where accelerating cosmological solutions have been studied.
Also, a localization procedure was proposed in this paper.
We continue to investigate this class of non-local models, and check for
the existence of de Sitter and power-law solutions.



Non-local models with the Gauss–Bonnet term and their
localization

We consider the non-local model with the Gauss–Bonnet term G:

SNL =

∫
dx4
√
−g
[
M2

Pl

16π
R + CGn1�−n2Gn3 − Λ

]
, (3)

where MPl is the Planck mass, C and Λ are constants,
nk are natural numbers, and the Gauss–Bonnet term

G = R2 − 4RµνR
µν + RµναβR

µναβ .

Rµν is the Ricci tensor, R is the Ricci scalar.
� is the d’Alembertian operator in the metric gµν acting on a scalar.
Using a localization procedure we can present action in the form

SL1 =

∫
dx4√−g

[
M2

Pl

16π
R + CGn1φn2 − ξ1G

n3 +

n2∑
j=1

φj�ξj −
n2−1∑
j=1

ξj+1φj − Λ

]
(4)



Action SL can be linearized with respect to the Gauss-Bonnet term, by
adding one more scalar field in the action 2). Let us consider the part of
action SL that includes the Gauss-Bonnet term:

SfGB =

∫
dx4
√
−g [CGn1φn2 − ξ1Gn3 ] . (5)

To linearize this action with respect to G we introduce a scalar field σ and

f (σ) = Cσn1φn2 − ξ1σn3 , (6)

and get that the following equivalent action:

SGBσ =

∫
dx4
√
−g
[
df

dσ
(G − σ) + f

]
=

=

∫
dx4
√
−g
[(
n1Cσ

n1−1φn2 − n3ξ1σ
n3−1

)
(G − σ) + Cσn1φn2 − ξ1σn3

]
.

Varying over σ, one gets σ = G and the action SfGB . Note that the scalar
field σ is not dynamical, because it has no kinetic term.

2G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov and S. Zerbini, Phys. Rev. D 73
(2006) 084007, [hep-th/0601008]



So, the initial action SNL can be written in the following scalar-tensor
form:

S =

∫
dx4
√
−g

[
M2

Pl

16π
R + FG − V −

n2∑
k=1

gµν∂µξk∂νφk

]
(7)

where we use the following redesignation

F = n1Cσ
n1−1φn2 − n3ξ1σ

n3−1 , (8)

V = − Cσn1φn2(1− n1)− ξ1σn3(n3 − 1) +
n2−1∑
k=1

ξi+1φi + Λ . (9)



Friedmann equations

We consider the spatially flat FLRW universe with the interval

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
. (10)

In this metric one gets

R = 6(Ḣ + 2H2), G = 24H2(Ḣ + H2), �F = − 3HḞ − F̈ ,

where the Hubble parameter H = ȧ/a and dots mean the time
derivatives.



Field and Friedmann equations

In the FLRW metric the field equations have the following form

φ̈k = −3Hφ̇k + G ∂F
∂ξk
− ∂V

∂ξk
, ξ̈k = −3H ξ̇k + G ∂F

∂φk
− ∂V

∂φk
. (11)

The Friedmann equations read as follows

3H2M
2
Pl

16π
− 1

2

n2∑
k=1

(
φ̇k ξ̇k

)
− 1

2
V = −12H3Ḟ , (12)

−
(

3H2 + 2Ḣ
) M2

Pl

16π
− 8H

(
H2 + Ḣ

)
Ḟ − 4H2F̈ − 1

2

n2∑
k=1

φ̇k ξ̇k +
V

2
= 0.

(13)
Subtracting (13) from (12), we get

8H3Ḟ − 4�FH2 +
3M2

Pl

8π
H2 + 8HḞ Ḣ +

M2
Pl

8π
Ḣ − V = 0. (14)

Note that Eqs. (13) and (14) are third order differential equations with
respect to the Hubble parameter.



Search for de Sitter solutions

If the Hubble parameter is a constant: H = H0, then the Gauss-Bonnet
term reads G = 24H4

0 ≡ G0 and σ = G0. As a consequence, the
corresponding field equations get transformed into the following system
of linear first order differential equations, with constant coefficients,

φ̇1 = ψ1,

ψ̇1 = − 3H0ψ1 − Gn30 ,
φ̇j = ψj , j = 2, . . . , n2,

ψ̇j = − 3H0ψj − φj−1, j = 2, . . . , n2.

(15)

The system (15) has the following solution

φj = Pj(t)e−3H0t − Gn30
j!(3H0)j

t j + P̃j(t), (16)

where Pj(t) and P̃j(t) are (j − 1)-degree polynomials of t with
coefficients that include 2j arbitrary parameters.



Analogously, the second system of field equations can be presented in the
form

ξ̈j + 3H0ξ̇j + ξj+1 = 0, j = 1, . . . , n2 − 1,

ξ̈n2 + 3H0ξ̇n2 − CGn10 = 0,
(17)

and the solution reads

ξj = Qj(t)e−3H0t +
CGn10

(n2 − j + 1)!(3H0)n2−j+1
t(n2−j+1) + Q̃j(t), (18)

where Qj(t) and Q̃j(t) are polynomials in t of degree (n2 − j) + 1.
To check for the existence of de Sitter solutions, one must substitute the
solutions of the field equations thus obtained into Eqs. (12) and (14).



In the cases when n1 = n2 = n3 = 1 and n1 = −n2 = n3 = −1 the Sitter
solutions have been found in 3. To get de Sitter solution in the model is
non-trivial problem. For example, we checked that de Sitter solution is absent
in case n1 = 1, n2 = 2, n3 = 1. We obtain de Sitter solution the case n2 = 2.

3S. Capozziello, E. Elizalde, S. Nojiri, and S.D. Odintsov, Phys. Lett. B 671
(2009) 193, [arXiv:0809.1535]



case n2 = 2

Let us consider the case n2 = 2.
The field equations

−φ̈1 − 3H0φ̇1 = Gn30 , −φ̈2 − 3H0φ̇2 = φ1 (19)

and
−ξ̈2 − 3H0ξ̇2 = −CGn10 , −ξ̈1 − 3H0ξ̇1 = ξ2 (20)

have the following solutions:

φ1 = A1e
−3H0t − G

n3
0

3H0
t + B1, (21)

φ2 =

(
A1

3H0
t + A2

)
e−3H0t +

Gn30
18H2

0

t2 −
(
Gn30

27H3
0

+
B1

3H0

)
t + B2 (22)

ξ1 =

(
C1

3H0
t + C2

)
e−3H0t − CGn10

18H2
0

t2 + C

(
Gn10

27H3
0

− D1

3H0

)
t + D2, (23)

ξ2 = C1e
−3H0t + C

Gn10
3H0

t + CD1, (24)

where Ai , Bi , Ci , and Di are integration constants.



Substituting these expressions into Eq. (12),

3H2
0

M2
Pl

16π
− 1

2

(
n2∑
k=1

φ̇k ξ̇k

)
− 1

2
V = −12H3

0 Ḟ , (25)

we see that this equation can be satisfied only if n1 + n3 = 4. Also, we
get the following restriction to the integration constants

A1 = 0, C1 = 0, C2 = −242n1(2n1 − 1)A2CH
8(n1−2)
0

331776(2n1 − 7)
, (26)

B1 = −331776(n1 − 2)H16−8n1
0 D1 + 24n1442368H14−4n1

0

(n1 − 2)
. (27)

These restrictions are not valid for n1 = 2.
Also, we have the additional to connect the values of the parameters of
the solutions, with Λ

Λ = − 3H2
0M

2
Pl

8π
− 8192C (13n1 + 4)H12

0

(n1 − 2)

+ 24−n1331776D2(n1 − 3)H16−4n1
0 + 24n1CB2(n1 − 1)H4n1

0

− 24−n173728(5n1 − 4)CD1H
14−4n1
0

n1 − 2
− 24−2n1331776CD2

1H
16−8n1
0 .

(28)



Consequently, the value of Λ fixes the value of one of the integration
constants: B2 for n1 = 3 or D2 for n1 = 1.
Summing up, we do get explicitly de Sitter solutions for models with
n1 = 1, n2 = 2, n3 = 3 and n1 = 3, n2 = 2, n3 = 1.
We have also discovered that models with n2 = 2 and other values of n1
and n3 do not have de Sitter solutions.
Straightforward substitution of the field expressions when n1 = n3 = 2
already proves the absence of the de Sitter solutions in this case.



Power Law solutions

The search of power-law solutions with H = J/t is more complicated. We
consider the case when n1 or n3 is equal to 1. If n1 = 1 and n3 = 1, then

V = ξ2φ1, F = Cφ2 − ξ1 (29)

with the following form for the field equations

�φ1 = G, �φ2 = φ1, (30)

�ξ2 = −CG, �ξ1 = ξ2, (31)

where G = 24(J − 1)J3/t4.
Using these formulas, we immediately obtain the form of Eq. (14)

−2
(

3H2 + Ḣ
) M2

Pl

16π
−8H

(
H2 + Ḣ

)
(C φ̇2−ξ̇1)+4(Cφ1−ξ2)H2+ξ2φ1 = 0

(32)
The model with n1 = 1 and n3 = 1 yields power law solutions with
H = J/t at J = 2/3 and J = 3. The corresponding scalar fields admit
two types of expressions.



The first type of solutions corresponds to

φ1 = −C1 t
−3H0+1

3J − 1
+ 4

J3

t2
− 1

2

K (3J + 1)

J C (J − 1)

φ2 =
1

4

t2K

J C (J − 1)
− K3 t

−3J+1

C (3J − 1)
− 1

6

C1 t
3−3J

3 J2 − 4 J + 1
− 4

J3 ln (t)

3J − 1
+ C4

ξ1 = 4
CJ3 ln (t)

3J − 1
− K3 t

−3J+1

3J − 1
+ K4

ξ2 = −4
CJ3

t2
,

where in the case J = 2/3, C1 = 7168
729C3

, while in the case J = 3, either
C1 = 0 or C3 = 0.



Another type of solutions, with the same Hubble parameters, is given by

φ1 = 4
J3

t2
,

φ2 = −C3 t
−3J+1

3J − 1
− 4

J3 ln (t)

3J − 1
+ C4,

ξ1 = 4
CJ3 ln (t)

3J − 1
− CC3 t

−3J+1

3J − 1
− 1

4

t2K

J (J − 1)
− 1

6

t3−3JK1

3 J2 − 4 J + 1
+ K4,

ξ2 = −K1 t
−3J+1

3J − 1
− 4

CJ3

t2
+

1

2

K (3J + 1)

J (J − 1)
,

where in the case J = 2/3 we have the additional condition
K1 = − 7168C

729C3
, while in the case J = 3, either C3 = 0 or K1 = 0. Note

that the form of the solutions obtained excludes a few values of J, which
must be checked separately.



Conclusions

We analyze the Gauss-Bonnet non-local gravity model:

SNL =

∫
dx4
√
−g
[
M2

Pl

16π
R + CGn1�−n2Gn3 + Lm

]
.

and obtain

I in the specific case n2 = 2, de Sitter solutions exist only in these two
cases: for n1 = 1 and n3 = 3, or for n1 = 3 and n3 = 1. Both these
models yield no power-law solutions;

I if n1 = 1 and n3 > 1 (or n1 > 1 and n3 = 1, respectively), then
power-law solutions do not exist;

I in the case n1 = n3 = 1, power-law solutions with H = J/t exist
only for J = 2/3 and J = 3. Therefore, the model with n1 = 1,
n2 = 2, and n3 = 1, without additional matter, is suitable in order to
describe the matter-dominated phase of the Universe evolution that
corresponds to J = 2/3.
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