

SOLAR NEUTRINO CAPTURE CROSS-SECTION FOR ⁷⁶Ge NUCLEI *

FAZLIAKHMETOV, ALMAZ ^{1,2} LUTOSTANSKY, Yury ³

INZHECHIK, LEV¹ TIKHONOV, VICTOR³ KOROTEEV, GRIGORY¹ VYBOROV, ANDREI^{1,2}

¹Moscow Institute of Physics and Technology, Russia ²Institute for Nuclear Research, Russia

³National Research Center Kurchatov Institute, Russia

*posted on https://arxiv.org/abs/1810.07452

MAJORANA experiment

GERDA experiment

 $0\nu\beta\beta\ decay:$ $^{76}_{32}Ge \rightarrow ^{76}_{34}Se + 2e^-, \quad Q_{0\nu\beta\beta} = 2039\ keV$

v backround: $v_e^{\text{solar}} + {}^{76}Ge \rightarrow {}^{76}As + e^- + n\gamma$ ${}^{76}As \rightarrow {}^{76}Se + e^- + \overline{v_e} + m\gamma$

background events in MAJORANA experiment (2017)

MAJORANA, GERDA \rightarrow LEGEND

Scheme of transitions

Scheme of transitions

$$\sigma_{total}(E_v) = \sigma_{discrete}(E_v) + \sigma_{resonances}(E_v) \quad (= 0, if E_v \le Q_{EC})$$
(1)
levels

$$\sigma_{discrete}\left(E_{v}\right) = \sum_{k} \frac{G_{F}^{2} cos^{2} \theta_{c}}{\pi} p_{e} E_{e} F(Z, E_{e}) \left[B(F)_{k} + \left(\frac{g_{A}}{g_{V}}\right)^{2} B(GT)_{k}\right]$$
(2)

$$\sigma_{\rm res}(E_{\nu}) = \frac{1}{\pi} \int_{\varepsilon_{\rm min}}^{\varepsilon_{\rm max}} G_{\rm F}^2 \cos^2\theta_{\rm C} p_e E_e F(Z, E_e) S(E) dE$$
(3)

 G_F – the weak coupling constant, θ_c – the Cabibbo angle p_e/E_e – the outgoing electron momentum / total energy $F(Z, E_e)$ – the Fermi function $\frac{g_A}{g_V}$ – the ratio of the axial vector and vector coupling constants $B(F)_k$, $B(GT)_k$ – the Fermi (Gamow-Teller) response k-th excited state of ${}^{76}_{33}As$ * $S_\beta(E)$ – nuclear beta strenght function E_{sep} – neutron separation energy, E_{sep} = 7.3 MeV ε_{min} = 5 MeV, $\varepsilon_{max} = E_{sep}$ $\nu_{e \ solar}$ +

$$v_{e \ solar} + {}^{76}_{32}Ge \rightarrow {}^{76}_{33}As + e^{-1}$$

S(E), MeV⁻¹

Charge-exchange strength function of the ⁷⁶*Ge*(³*He, t*) ⁷⁶*As reaction S*(*E*)

S(E), MeV⁻¹

Charge-exchange strength function of the ⁷⁶*Ge*(³*He, t*) ⁷⁶*As reaction S*(*E*)

S(E), MeV⁻¹

Charge-exchange strength function of the ⁷⁶*Ge*(³*He, t*) ⁷⁶*As reaction S*(*E*)

Cross-sections for ${}^{76}Ge(v_e, e){}^{76}As$ *reaction*

Flux density of incident neutrinos (*BS*05 *model*)

Rate of solar neutrino capture

Capture rate of solar neutrinos [*SNU]	рер	hep	¹³ N	¹⁷ F	¹⁵ 0	⁷ B	Total capture rate
R _{discr}	1.369	0.0451	0.102	0.021	0.828	13.54	15.9
R _{total}	1.369	0.090	0.102	0.021	0.828	21.17	23.58
R _{discr} + R _{GTR}	1.369	0.070	0.102	0.021	0.828	17.46	19.85
R _{GTR} / R _{total}	0%	28%	0%	0%	0%	19%	17%
R _{cont} / R _{discrete}	0%	99%	0%	0%	0%	56%	48%

*SNU = $10^{-36} \frac{1}{nucleon \cdot s}$

Summary:

- \bullet $\sigma(E_v)$ were determined using S(E) for discrete and continuous states
- ***** The effect of resonance structure on $\sigma(E_v)$ was investigated
- ✤ 17% contribution of only GTR
- ✤ Account of continuous states increases R by up 50%

It is planned to:

- Consider other types of resonances and states behind S_n
- Consider neutrino oscillations

★ Calculate the contribution of the secondary process ${}^{76}As \rightarrow {}^{76}Se + e^- + \overline{\nu_e}$ (account the design of detecting elements)

THANK YOU FOR YOUR ATTENTION!