4π semiconductor beta-spectrometer for measurement of ¹⁴⁴Ce-¹⁴⁴Pr spectra

A. Derbin, <u>I. Drachnev</u>, I. Kotina, I. Lomskaia, V. Muratova, N. Pilipenko, D. Semenov, E. Unzhakov

IV international conference on particle physics and astrophysics

October 25, 2018

A. Derbin, I. Drachnev, I. Kotina, I. Lomskaia, V. Muratova, N. 47

 Beta-decays could be classified as

- (super-) allowed ($\Delta \pi = 0, \Delta I = 0, 1$)
- first forbidden ($\Delta \pi = -1, \Delta I = 0, 1$)
- first forbidden unique($\Delta \pi = -1, \Delta I = 2$)
- second,third... forbidden

All transitions but allowed can't take place considering single nucleon due to conservation laws. And here the story begins...

Electromagnetic counterpart of beta-transitions

Beta-decay shape could be expressed as:

$$N(W) = Kp^2(W - W_0)^2 H(W)F(Z, W),$$

Where the following correction factors are present:

- shape factor H(W);
- Fermi function $F(Z, W) = F_C(Z, W)L_0(Z, W)C(Z, W)S(Z, W)G(Z, W)B(W);$
 - Coulomb interaction $F_C(Z, W)$;
 - electromagnetic finite-size correction $L_0(Z, W)$;
 - weak finite-size corrections $C_V(Z, W), C_A(Z, W)$;
 - screening correction S(Z, W);
 - radiative corrections $G_{\beta}(Z, W), G_{\nu}(Z, W)$;
 - weak magnetism correction B(W).

¹⁴⁴Ce decay

		тер	τεβ του	
696.5 (1.3%)	133.5 (11.1%)	2997.5 (97.9%)	318.7 (76.5%)	
2185.7 (0.69%)	80.1 (1.36%)	2301.0 (1.04%)	185.2 (19.6%)	
1489.1 (0.28%)	41.0 (0.26%)	811.8 (1.05%)	238.6 (3.9%)	
(1.3%) 2185.7 (0.69%) 1489.1 (0.28%)	$(11.1\%) \\ 80.1 \\ (1.36\%) \\ 41.0 \\ (0.26\%)$	(97.9%) 2301.0 (1.04%) 811.8 (1.05%)	(76.5%) 185.2 (19.6%) 238.6 (3.9%)	

The form factor is parametrized as $H(W) = 1 + A \times W + B/W + C \times W^2$ (Laubitz et al., 1956)

A. Derbin, I. Drachnev, I. Kotina, I. Lomskaia, V. Muratova, N. 4 π semiconductor beta-spectrometer for measurement of ¹⁴⁴Ce-

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A. Derbin, I. Drachnev, I. Kotina, I. Lomskaia, V. Muratova, N.

 4π semiconductor beta-spectrometer for measurement of $^{144}{
m Ce^{-1}}$

144Ce between Si(Li) and Nal

In order to extract the source spectrum one should consider:

A. Derbin, <u>I. Drachnev</u>, I. Kotina, I. Lomskaia, V. Muratova, N. 4π semiconductor beta-spectrometer for measurement of ¹⁴⁴Ce-

In order to extract the source spectrum one should consider:

Backgrounds coming from natural and cosmic/cosmogenic radioactivity

- Backgrounds coming from natural and cosmic/cosmogenic radioactivity
- presence of gamma-lines and conversions in the source

- Backgrounds coming from natural and cosmic/cosmogenic radioactivity
- presence of gamma-lines and conversions in the source
- radioactive impurities in the source (¹⁵⁴Eu, ²⁴¹Am, ²⁴⁴Cm)

- Backgrounds coming from natural and cosmic/cosmogenic radioactivity
- presence of gamma-lines and conversions in the source
- radioactive impurities in the source (¹⁵⁴Eu, ²⁴¹Am, ²⁴⁴Cm)
- Effects of detector entrance window penetration, including multiple propagation

- Backgrounds coming from natural and cosmic/cosmogenic radioactivity
- presence of gamma-lines and conversions in the source
- radioactive impurities in the source (¹⁵⁴Eu, ²⁴¹Am, ²⁴⁴Cm)
- Effects of detector entrance window penetration, including multiple propagation
- effects of detector transit without full energy deposit (crucial: sensitive region thickness is in direct dependence with spectral shape)

In order to extract the source spectrum one should consider:

- Backgrounds coming from natural and cosmic/cosmogenic radioactivity
- presence of gamma-lines and conversions in the source
- radioactive impurities in the source (¹⁵⁴Eu, ²⁴¹Am, ²⁴⁴Cm)
- Effects of detector entrance window penetration, including multiple propagation
- effects of detector transit without full energy deposit (crucial: sensitive region thickness is in direct dependence with spectral shape)

These effects are taken into account through Geant4.10.4.p01 simulation with electromagnetic package G4EmStandardPhysics_option4. Sensitive region geometry parameters established through maximum likelihood approach on actual spectra.

Spectrum measured

A. Derbin, <u>I. Drachnev</u>, I. Kotina, I. Lomskaia, V. Muratova, N. 4π semiconductor beta-spectrometer for measurement of ¹⁴⁴Ce⁻¹

<ロ> (日) (日) (日) (日) (日)

- A setup prototype with semiconductor detectors and 4- π geometry was developed
- The detectors show decent resolution that can not be achieved by other calorimetric spectrometers
- Beta spectrum extraction has difficulties due to lack of sensitive region size that will be overcome in further investigations

Thank You for Your attention

∃ → < ∃ →</p>