The Dark Matter Search at KamLAND

III .

The University of Tokyo Alexandre Kozlov

4th International conference on particle physics and astrophysics, Moscow

24 October 2018

A hypothetical Dark Matter (DM) signal

the measured energy spectrum (maximum is near June 2nd).

The DAMA/LIBRA-phase2 result

The DAMA/LIBRA-phase2 favours the presence of a modulated DM signal with proper features at 9.5° C.L.

Averaged background rate is ~1 ev/keV/kg/day. The modulation effect is just few per cent.

Interpretation of the DAMA/LIBRA result

We consider two possible explanations:

- □ The **Dark Matter signal**.
- background variations caused by seasonal effects (e.g. neutron flux intensity and energy spectrum dependence on the water content in rocks, etc).

What we can do:

- 1) Repeat an "identical" experiment at other locations.
- 2) Reduce the background below 1 ev/keV/kg/day.
- 3) Monitor possible **sources of background** (neutron, radon).

The Dark Matter project collaborators

D. Chernyak (Tokyo U.)

Y. Takemoto (Osaka U.)

 Gas-type detectors: Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Science
 Nal(TI) Dark Matter detectors: I.S.C. Laboratory, Tokushima U., Osaka U., Osaka Sangyo U., Tohoku U.

The HPGe detector

5cm-thick Cu 25cm-thick Pb (3 types of lead bricks)

The HPGe detector calibration

Marinelli beakers (0.7, 1.2L) are used for loose and liquid samples

NaturalLanthanumcontains0.08881%71 of¹³⁸Laemittingγ-rays:0.789MeV,1.435 MeVand36.4keV X-ray. Weused99.99% pure La2O3

NaturalLutetiumcontains2.599%13of ¹⁷⁶Luemitting γ-rays:401keV,306.8keV,201.8keV,88.3keVas64.0keVand55.1keVX-rays.We used99.9%pure Lu₂O₃

For every sample a realistic **GEANT4 model** is prepared to calculate the γ -ray detection efficiency

We made **extended sources with a small admixture of Lu and La** to verify correctness of the detector GEANT4 model based on the information provided by Canberra Corp.

The ion-pulse ionization chamber

JSPS grant: 16K05371

Used for a direct detection of α -particles from the ²²²Rn decay in the Room A air.

The ⁶LiF/ZnS thermal neutron detector

JSPS grant: 16K05371

A.Kozlov, D. Chernyak, NIM A, vol 903, 21 September 2018, Pages 162-169

The fast neutron detector

Organic liquid scintillator loaded with Lithium was developed and tested by H. Watanabe and Y. Shirahata (Tohoku U.)

Acrylic tank (30×30×30cm)

Liquid scintillator (LS) loaded with nat. Lithium (**7.6% of ⁶Li**) Pure LS components: **pseudocumene** (PC) + **PPO**(5g/L) **PC : Surfactant** (TritonX-100) mixing 82% : 18% **Nat. LiBr • H₂O** 37g/L

Photo-sensors: 4 Hamamatsu 5" R1250 PMTs (low K.)
DAQ: CAEN DT5720 (4ch, 12bit, 250MS/s)
Shielding: 10cm of lead to reduce accidentals
Pulse-shape discrimination works for both prompt and delayed signals. A 94% γ-ray rejection for a 90% eff. cut on the delayed signal was achieved.

A magnetic stirrer used to mix scintillator with a water solution of LiBr

The NaI(TI) radon detector

Pb shielding in the Cavity

Bottom layer: **15cm-thick lead** Walls: **10cm-thick double layer lead** Inner layer: a high purity Pb (²¹⁰Pb ~20Bq/kg) Volume of the air inside shielding: **9.7L** The **609keV γ-ray** detection efficiency: **0.196%** (calculated using the GEANT4 model)

2×2cm Nal(Tl) crystal + H3178 PMT directly connected to the DT5730 w-f digitizer (14-bit, 500 MS/s) was used to measure radon activity in the Cavity outside of the clean rooms. The ion-pulsed ionization chamber is difficult to use at that location due to a high radon activity (>1Bq/L) and relative humidity >94%.

Non-purified Nal

Purified Nal·2H₂0

Partner: I.S.C. laboratory

K. Imagawa, K. Yasuda

Purification techniques:
re-crystallization from an ultrapure water solution
Use of absorbers "tuned" to certain elements (e.g. Pb)

Steps used to minimize Radon daughters activity in Nal:

 Use of specially produced Nal powder in accordance with procedures developed by the Horiba Corporation;
 Nal is handled in clean rooms and a glove box flushed with a pure nitrogen;

☐ Minimized exposure to air between purification steps;

Use of continuous nitrogen purge during all stages of purification and drying process.

Radio-purity control techniques at Kamioka:

HPGe measurements

Direct measurements using the low background shielding

The Nal(TI) ingot production (Step 1)

Crucible:

- Material a coated, polished, purified (in a vacuum oven) graphite
- □ A new feature: a specially shaped bottom part
 - no need to use a seed to start crystal growth
- After cooling down Nal(Tl) crystals are detached from the graphite crucible easily due to a factor 10 difference in the thermal expansion coefficients.

The Nal(TI) ingot production (Step 2)

Machine cutting

Humidity control

Samples for TI test

E. resolution test

Abrasion

Encapsulation

Test setup for the NaI(TI) DM detectors

Mogura DAQ developed with Tokyo Electron Device Ltd

Mogura + TFA filter

Bottom: >**30cm of lead** Walls: **15cm of lead** Inner: **5cm** of special **Cu** Flushed with **3L/min of N₂**

• **12ch** Input \Rightarrow scalable

Mogura DAQ (9U VME)

- 0.1mV-10V (PHML gain channels) covers energy range from 1keV DM pulses to several MeV α-particles
- 1ns, 5ns sampling FADC
 - ⇒ essential for rejection of low-E short pulses (PMT noise)
- 10µs waveform
- Analog/Digital discrimination

и и и 4 50 и и и 100 и и и е 1

Hamamatsu metal body high QE ultra-low background PMTs: **R11065-20, R13444X**

Nal(TI) signal characteristics

The PSD discrimination (ingot #71, 28days)

Background (Ingot #71, 28days)

Ingot #71 (manufactured on Sept 14, 28days)

Background at low energies is dominated by **isotopes with a short half-life** created in Nal by **cosmic-ray muons** on the surface. A cooling down period required for decay of a major part of the cosmogenic background is **> 6 months**.

The NaI(TI) Dark Matter detector

- Detector options : 120kg and 250kg+ of Nal(Tl) in a solid shielding. Each module will be composed of a 5×5-inch Nal(Tl) crystal in an acrylic case connected to a 3" or 4" Hamamatsu PMT with a metal body.
- Deployment to KamLAND will be possible after the end of the KamLAND-Zen 800 experiment (3-4years from now).
- Right now, we stock shielding materials, screen components for ultra-low background photomultipliers.
- Copper was specially melted using freshly manufactured (less than 1.5 month) electroformed copper to avoid ⁶⁰Co (measured activity 0.3mBq/kg UL at 90% CL).
- Copper bricks were cleaned in 4-steps: (H₂SO₄+H₂O₂; C₆H₈O₇; 18.2MΩ H₂O; 18.2MΩ H₂O) to remove ²¹⁰Pb and other impurities
- Lead blocks were cleaned in a triple HNO₃ baths to remove surface contamination. For the most old lead machine cutting was done before acid cleaning.

Lead after acid cleaning

Cu bricks after cutting

<u>Summary</u>

- We developed research infrastructure for the Dark Matter search experiment based on ultra-low background NaI(TI) segmented detectors.
- Together with our partners we created a laboratory for mass production of Nal(Tl) crystals and achieved level of radio-purity of detectors used by the DAMA/LIBRA collaboration.
- Beginning of the full-scale detector construction depends on the Japanese government funding.

Thank you!

Other limits on search for a new physics

Sources of background other than muons

- The Radon that is present in the ground water and underground air (depends on the Uranium content in rocks);
- □ The **neutron background** produced by a spontaneous fission of heavy elements and in the (α ,n) reactions at depth>100m;
- Radioactive impurities existing in detector components (a difference between our "new" and "old" lead is shown as an example).

Muons

<u>Construction of an ultra-low background</u> <u>detector</u>

- High-class clean rooms are needed for handing detector materials, detector construction & operation to avoid dust particles that contain natural (e.g. U, Th, K) and artificial unstable nuclei (e.g. ¹³⁷Cs). That includes clean rooms at commercial companies that produce materials and detector components, and which we often cannot control well.
- Production of pure materials often require construction of purification systems on-site, as well as cleaning of the surfaces exposed to Radon and, thus, contaminated by ²¹⁰Pb (T_{1/2} = 22.2y) and ²¹⁰Po (T_{1/2} = 138d).
- Some materials, as Cu, are easily activated on the surface by fast neutrons, e.g. via the ⁶³Cu + n → ⁶⁰Co + α reaction 86.4 ±7.8 (kg · day)⁻¹
 ⁶⁰Co (T _½ = 5.3y) nuclei are produced. This sets a stringent limit on the production time, storage and ways of transportation of cooper and other materials (e.g. Ge).
- All that work requires **sensitive and reliable research infrastructure** for control of materials radio-purity and background sources underground.