Characterisation of the first prototype of large Micromegas chamber "LM2 Module-0" for the upgrade of the ATLAS Muon System

F. Capocasa, <u>F. Dubinin</u>, E. Farina, P. Iengo, G. Sekhniaidze, O. Sidiropoulou

Introduction

LHC Upgrade Phase II: increase of collision intensity \rightarrow increase of background rate

Small wheels:

- Trigger + precision muon tracking
- 1280m² active area

Increase of maximum hit rate in small wheels region up to 15 kHz/cm²

Resistive strip Micromegas:

- micro-pattern gaseous detector → reduced rate per readout channel
- spatial resolution below 100μm for inclined tracks
- high gain: ~10⁴
- spark protection

Prototype description

First full-size pre-series chamber – LM2 Module-0 The goal: development of production procedure

- 4 layers: two with horizontal strips, two with ±1.5° inclined strips
- 3 anode readout PCB per layer, 2 independent HV regions per PCB
- resistive anode strips creating amplification field
- 1024 readout copper strips per PCB with 425µm pitch
- micro-mesh and cathode compose drift pannel
- gas mixture: Ar/CO_2 (93%/7%)

Anode printed circuit board

- Pillars Pyralux structure, supporting mesh and form amplification gap
- Resistive strips HV distribution
- Kapton foil insulator between resistive and copper strips
- Copper strips readout structure
- Textolite base matherial

The PCBs have defects on the active area:

- Missing pillars
- Bumps (height of a few tens microns)
- Scratches
- Damaged edges
- etc...

One was passivated the regions with deffects

Gas-gain mapping with x-rays

This sector is used for all the rest measurements

- Colimated x-ray tube with 5° opening angle
- Silver transmission target
- Tube settings: 50kV, 80µA
- Measure amplification current in 2280 points

Relative gas-gain map has been produced for each layer:

• Measured inhomogeneity ~25%

Efficiency mapping

2D distribution of cosmic muons:

- efficiency map for each layer with respect to other 3 layers
- efficient if matching hit in fourth layer within 15mm
- Edrift = 0.6kV/cm

Results:

- Corresponds to x-ray map and reparations map
- Efficiency ~90% for layer 1 and 4
- Efficiency ~60% for layer 2 and 3 low amplification field

Efficiency map PCB6 left HV region

Gas-gain measurements

Gain measurements performed with Cd-109 x-ray souce

- Calibrated preamplifier scale
- 6 positions at Layer 4
- Amplifcaton scan at each position
- E_drift = 0.6kV/cm
- Exponential increase as expected
- Gain ~ 2.5x10³ at 53kV/cm

GIF++ facility

- 13 TBq ¹³⁷Cs source, SPS North Area
- 662keV γ-radiation + continuum (Compton scattering)
- field shaper: constant photon current in plane
- retractable absorbers \rightarrow adjust photon flux
- Hit rate ~ 3.10⁷ at full source at the chamber position
- high-energy muon beam: ~100GeV, 10⁴ per spill

Amplification & drift voltage scan

- HV scan at attenuation factors 1, 10, 46
- E_drift = 0.6kV/cm

 \rightarrow exponential behaviour is observed for any source rate

Amplification current vs E drift 1600 I1 left ♦ I2 left 1400 VI3_left 1200 ▲ I4 left 1000 l, nA 800 600 400 200 0 0 0.02 0.03 0.04 0.01 0.01 0.02 0.03 0.04 E drift/E ampl

- Source at attenuation factor 10
- E_ampl ~ 50 kV/cm
- \rightarrow Low E_drift: electron attachment
- → High E_drift: low electron mesh transparency
- → Difference between Layers 1,2,4 and Layer 3 – to be understood

Muon beam

Amplificaton scan at 4 layers performed

E_drift = 0.6kV/cm

- Layer 1 working point at 580V (53kV/cm)
- Layer 2 can't reach working point
- Layer 3 full efficiency expected at >600V, leeds to low E_drift/E_ampl ratio
- Layer 4 working point at 600V (54kV/cm)

Spatial resolution estimated from residual between hits at Layer 1 and 2

σ ~ Sigma/Sqrt(2) ~ 93μm

Long-term irradiaton

- 16 sectors under constant HV
- Monitoring current
- Scan for different source attenuation factor
- Operation at constant HV and attenuation factor (a few days in total)
- \rightarrow no gain degradation observed

Summary

First prototype of pre-series resistive strip Micromegas module constructed and tested

- Tests with x-ray shows inhogeneity of relative gas-gain map ~25% for regions without reparations
- Efficiency map has been produced with cosmics is being corelated to relative gas-gain map and reparations layout
- Single electron gain is estimated with Cd-109 x-ray source at Layer 4 to be ~2.5x10³

Tests in GIF++

- Amplification and drift scans show expected behaviour
- Working point of each layer is estimated from muon beam
- Spatial resolution measured to be \sim 93µm

Outlook

- Open the chamber to study the problem with Layer 3
- Continuation of aging tests in GIF++

Back-up slides

PCB detales

-	Stiffening panel	[***
5.0	• <mark>□ · · □ · · □ · · □</mark> · · <mark>□</mark> · · □	
	Stiffening panel	

GIF++ Source attenuation factor

nominal attenuation	observed attenuation	observed photon current [cm ⁻² s ⁻¹]	measured hit rate small chamber [cm ⁻² s ⁻¹]	measured sensitivity small chamber
4.6	4.5	9.8x10 ⁶	34x10 ³	3.5x10 ⁻³
10	8.8	5.0x10 ⁶	18x10 ³	3.6x10 ⁻³
46	(29)	(1.5x10 ⁶)	5.3x10 ³	assuming 3.6x10 ⁻³

Cosmics stand

Claster charge map

Claster charge map PCB6-left

Cluster charge layer 3

