Status of the Super Charm-Tau project at Novosibirsk

Pavel Krokovny Budker INP & Novosibirsk University

Outline:

- Introduction
- Collider & detector
- Physics program
- Status of the project
- Summary

22-26 October

Current and legacy experiments

LHC

Current and future experiments

LHC phase 2 LHC HL

PANDA

3

Super c-τ collider

- Double ring collider with crab waist ۶
- CM energy from 2 to 6 GeV ۶
- $L = 10^{35}$ at 2 GeV ≻

Polarized e Gun

- Beam size at IP: 20 x 0.2 µm ≻
- Longitudinal polarization of e ۶

Thermoionic

Gun

440 meters of linear acelerators

Energy range

Detector

Requirements

- > Occupancy up to 300 kHz
- Good energy and momentum resolution
- High reconstruction efficiency to soft tracks
- Perfect π/K and π/μ
 separation
- Minimal *CP* detector
 asymmetry

Inner tracker

Requirements

- $\succ\,$ Reconstruction of ${\rm K_s^{\,0}}$ and Λ
- $\,\,$ $\,$ Increase a solid angle of the detector up to 98 %
- > Detection of particles with momentum from 50 MeV/c
- ▷ Dimensions: $R_{inner} \ge 2.5 \text{ cm}$, $R_{external} \le 20 \text{ cm}$, $L \le 60 \text{ cm}$

TPC + GEM endcap redout

- $\succ~80\%~Ar$, 20% $CO_2 \rightarrow~30~clusters$ / cm
- > σ_{xy} ~ 50–100 μm
- $\succ \sigma_{\rm z}$ ~ 300 $\mu {\rm m}$
- $\succ \sigma_{\rm dE/dx}$ ~ few %
- > E = 300–400 V / cm \rightarrow V_{dr} \sim 5cm / μ s
- P(π)_{min} ~ 55 MeV/c

Cylindrical GEM

- Material budget ~ 1.5% X₀
- $\sim \sigma_{\rm XY} \leq$ 100 μm / layer
- · σ_T ≤ 7 ns
- \succ No $\sigma_{\rm dE/dx}$ information
- P(π)_{min} ~ 55 MeV/c

Si-tracker

- > 4 layers
- Material budget ~ 2.4% X₀
- P(π)_{min} ~ 80 MeV/c

Straw tubes

- ≻ σ_{xy} ≤100 μm
- P(π)_{min} ~ 55 MeV/c
- Rate ~ 10⁴-10⁵ track / (cm²s)

Drift Chamber

Tasks

- Tracks reconstruction
- Momentum measurements
- > PID by dE/dx

Parameters

- > Dimensions; $R_{in/ext} = 20 / 80 \text{ cm}$, L = 180 cm
- Small cell, drift distance < 8mm</p>
- > 10 903 cells, 29 260 field wires
- > 60% He, 40% C_3H_8 or 50% He, 50% C_2H_6
- U ~ 2 kV
- \succ $\tau_{drift} \sim 0.3 \ \mu s$
- $\succ \sigma_{\rm R}$ ~100 μm
- Material budget ~ 0.7% X₀

Particle Identification

Tasks

- \succ π / K separation for P ≥ 0.6 GeV/c
- > μ / p separation for P \leq 1.2 GeV/c

Modern state of art

π / K separation

- > TOF: BES-III (MPD NICA)
 - $\sigma_{_{\rm T}}$ ~ 100 ps $\,\rightarrow\,$ 3 σ at 0.9(1.5) GeV/c
- $\,\,$ DIRC(BaBar) ~ 4 σ up to 2.5 GeV/c
- > ASHIPH(KEDR) ~ 4σ up to 1.5 GeV/c
- μ / π separation
 - > Belle: 2.5÷2.8 σ at P ~ 1 GeV/c

FARICH idea

Perespectives

- π / K separation
 - ≻ $\sigma_{\rm T}$ ~ 50 ps → 3 σ at 1.8(3.0) GeV/c
 - > fDIRC ~ 3σ up to 4.25 GeV/c
 - → FARICH ≥ 3σ up to 6 GeV/c
- μ / π separation
 - > FARICH ~ 5σ at P ~ 1 GeV/c

Focusing Aerogel RICH

- Photon detectors $(3 \times 3 \text{ mm}^2)$:
 - Barrel SiPMs (16 m²)
 - Endcap SiPM, MCP PMT?, HAPD? (5 m²)
- $1 \div 2 \cdot 10^6$ channels (it depends on pitch)
- $\bullet \$ load 0.5÷1.0 MHz/channel
- Cooling system is needed

Calorimeter

Tasks

- > Detection of γ from 1 MeV to 2 GeV
- Good energy and spatial resolution
- Separation of electrons and hadrons
- Trigger formation

Expected parameters (pure Csl)

- $\rightarrow \sigma_{\rm E}/{\rm E}$ =1.8% at 1 GeV
- $\rightarrow \sigma_{z} \sim 6 \text{mm} / \sqrt{\text{E(GeV)}}$
- > 16-18 $X_0 \rightarrow$ 30-34 cm
- t ~ 30ns (1µs for CsI(Tl))
- > 5248 crystals \rightarrow 26-31 tones
- Photodetectors: Photopentodes, APD or SiPM (+ WLS)

	ρ , g/cm ³	X ₀ , cm	λ_{em} , nm	n(入em, nm)	N_{ph}/MeV	T, ns
CsI(TI)	4.51	1.85	550	1.8	52000	1000
pCsI	4.51	1.85	305	2	2000-5000	20
LSO (Lu ₂ SiO ₅)	7.4	1.14	440	1.87	25000	40
LYSO (Lu ₂ Y ₂ SiO ₅)	7.4	1.10	430	1.82	31000	40
GSO (Cd ₂ SiO ₅)	6.7	1.38	375	1.87	8000	50

Muon ID (μ / π -separation)

Parameters

- > Barrel 9 layers in the yoke (64% of 4π)
- > Endcap 8 layers in the yoke (30% of 4π)
- > S_{total} ~ 1000 m²

Current detectors, μ / π -separation

- > BaBar 64% efficiency, 2% π fake rate at 0.5 2 GeV/c
- > BaBar 90% efficiency, 2% π fake rate for P > 1 GeV/c
- > KEDR 95% efficeincy, 5% π fake rate for P > 1 GeV/c

Pion fake rate must be suppressed by factor 100. It is necessary to use an additional system, e.g. FARICH, TOF with $\sigma_{\rm T}$ < 30 ps.

Gas tubes

- > Used by CMD-3, KEDR, PANDA
- > ageing? Rate capability?

RPC

- > Used by BaBar, Belle
- Ageing, complex electronic required

Charming program

ФАНО России Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ имени Г.И. Буджера Сибирского отделения Российской академии наук (ИЯФ СО РАН)

Супер Чарм – Тау фабрика

КОНЦЕПТУАЛЬНЫЙ ПРОЕКТ ЧАСТЬ ПЕРВАЯ (физическая программа, детектор)

Новосибирск – 2017

http://ctd.inp.nsk.su

Charmonia

- Spectroscopy
- BR`s
- Light mesons on J/ψ decays

Charm mesons

- Spectroscopy
- BR's
- Mixing
- \mathcal{CP} violation

Charm baryons

- Spectroscopy
- Br`s
- $\sim C\mathcal{P}$ violation

τ lepton

- Michel parameters
- Spectral functions
- $\succ C\mathcal{P}$ violation
- Lepton flavour violation
- Lepton universality

Two-photon processes

- Search for C-even states
- > $\sigma(\gamma\gamma \rightarrow \text{hadrons})$

 $\sigma(e^+e^- \rightarrow \text{hadrons})$

Spectroscopy of Charm Mesons

GeV/c

2.6

2.4

2.2

2

1.8

- > Observables
 - $_{\odot}$ Exclusive and inclusive cross-sections
 - \circ Decay branching fractions
- \succ Example: D_{s0}^* (2317) и D_{s1} (2460)
 - \circ Masses are about 50 MeV lower then predicted by potential models
 - Decays with final-state neutrals (not accessible for LHCb)
 - $_{\odot}$ Nature of these states is still not clear

Mixing and CP violation in charm

Quantum correlations in action

 $\Gamma(K^{-}\pi^{+}, K^{+}\pi^{-}) \propto |A_{K\pi}|^{4} (1 - r_{K\pi}^{2})^{2}$ $\Gamma(K^{-}\pi^{+}, X) = |A_{K\pi}|^{2} [1 + 2yr_{K\pi} \cos \delta_{K\pi} + r_{K\pi}^{2}]$

- Many more relations with *CP*-specific and multibody *D*⁰ decays (see PRD 73 (2006) 034024)
- $\,\circ\,$ This approach allows one to measure charm mixing together with phase $\delta_{K\pi}$
- > There are other methods to measure charm mixing at Super c- τ factory
- Super c-τ factory is competitive with Belle II and LHCb in measurement of charm mixing

$$\begin{array}{c} r_{K\pi} \cdot e^{i\delta_{K\pi}} \equiv \frac{\mathcal{A}(\overline{D}^{\,0} \to K^{-}\pi^{+})}{\mathcal{A}(D^{\,0} \to K^{-}\pi^{+})} \\ \mathcal{A}(D^{\,0} \to K^{-}\pi^{+}) \equiv A_{K\pi} \end{array}$$

Charm mesons multibody decays

$$D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$$

$$P^{0}\pi^{+}\pi^{-}$$

$$D^{0}\pi^{+}\pi^{-}$$

$$P^{0}\pi^{+}\pi^{-}$$

- \triangleright Only probability density $|A(m_+^2,m_-^2)|^2$ is observable
- > Isobar approach for amplitude parameterization

 $A(m_{+}^{2}, m_{-}^{2}) = \sum a_{i} F_{i}(m_{+}^{2}, m_{-}^{2})$

$$F_{j}(L, s,) = R_{j}(s) \times F_{D} \times F_{R} \times T_{j}(L, \vec{p}_{D}, \vec{p}_{R})$$
Resonance term
(Breit-Wigner)
Formfactors
Angular
distribution

 The amplitude model obtained can be used in other measurements (ex. CKM phases β and γ, charm mixing)

Measurement of Michel parameters

$$\frac{d\Gamma(\tau^{\mp})}{d\Omega dx} \propto x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \mp P_{\tau} \cos\theta_l \xi \sqrt{x^2 - x_0^2} \left[1 - x + \frac{2}{3}\delta\left(4x - 4 + \sqrt{1 - x_0^2}\right)\right],$$

 $\tau \rightarrow Ivv$ decay amplitude is defined by Michel parameters. In SM (V-A charged weak current) their values are:

$$\rho = \frac{3}{4}, \quad \eta = 0, \quad \xi = 1, \quad \delta = \frac{3}{4}$$

On b-factory Michel parameters are measured by spin-spin correlations on $\tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$ pair

Super c- τ factory with polarized e⁻ beam would allow to measure it in single τ decay.

 $x \equiv \frac{E_l}{E_{\text{max}}}, \qquad x_0 \equiv \frac{m_l}{E_{\text{max}}}$

Check for LFU in τ decays

$$\tau^{-} \rightarrow l^{-} \bar{\nu}_{l} \nu_{\tau}$$

$$\Gamma(\tau^{-} \rightarrow \nu_{\tau} l^{-} \bar{\nu}_{l}) = \frac{G_{\tau} G_{l} m_{\tau}^{5}}{192\pi^{3}} f\left(\frac{m_{l}^{2}}{m_{\tau}^{2}}\right) r_{\rm EW}$$

$$r_{\rm EW} \approx 0.9915, f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \ln x, \ G_{l} = \frac{g_{l}^{2}}{4\sqrt{2}m_{W}^{2}}$$

Parameter	SM prediction	Measurement
$\mathcal{B}\big(\tau^- \to \nu_\tau \mu^- \bar{\nu}_\mu\big)$	0.972564 <u>+</u> 0.000010	0.9796 <u>+</u> 0.0016 <u>+</u> 0.0036
$\overline{\mathcal{B}(\tau^- \to \nu_\tau e^- \bar{\nu}_e)}$		[BaBar, PRL 105 (2010) 051602]

Super c- τ factory can significantly reduce systematic uncertainty

Search for LFV decay $\tau \to \mu \gamma$

Allowed in some NP models Main background sources:

- o $\tau \to \mu \nu \nu + \mathrm{ISR}$ photon
- $\circ \tau \rightarrow \mu \gamma \nu \nu$
- $\circ \tau \to \pi \nu + \mathrm{ISR}$ or beam photon

Expected limits on $B(\tau \rightarrow \mu \gamma)$ Belle II: O(10⁻⁹) Super c- τ : O(10⁻¹⁰)

cc spectroscopy

Status of the project

- > Detailed physics program is developed.
- CDR was issued in 2011 and updated in 2017.
- > R&D for accelerator and detector is in progress.
- Preliminary civil engineering and infrastructure design is completed.
- Computing requirements are identified.
- CERN, IHEP, INFN, KEK and other organizations expressed their interest in the project.
- The project is included in the plan for the implementation of the first phase of the Russian Strategy for Science and Technology Development.

Conclusion

- Experiment on Super c- τ factory has rich physics program.
- Super c- τ physics program is complementary to Belle II and LHCb.
- BINP has long history in producing and operating colliders and detectors for local and international experiments.
- Project is supported by Russian government, first R&D started.
- We are open to collaboration proposal.

Backup

BINP colliders

BINP colliders

VEPP-4M

VEPP-2000

In operation from 2009 Round beams, $\sqrt{s} = 0.3 - 2.0$ GeV L = 5 10³¹ cm⁻²s⁻¹@ 2 GeV Two detectors:

CMD-3 SND

In operation from 2003 $\sqrt{s} = 2 - 10 \text{ GeV}$ L = 2 10³⁰ cm⁻²s⁻¹@ 2 GeV L = 8 10³¹ cm⁻²s⁻¹@ 10 GeV

Detector KEDR

Physics program

VEPP-2000

- Measure cross section and dynamic of $e^+e^- \rightarrow nh$ (h = π , K, η , ...)
- Precise measurement of $R \equiv \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$
- Spectroscopy of light mesons (r,w,...)
- Measurement of nucleons form-factor

VEPP-4M

- Priciest measurement of mass: J/ ψ , ψ ' ..., Y(nS), D, τ
- R Measurement at [2 7] GeV
- $c\bar{c}$ and $b\bar{b}$ spectroscopy
- Two photon physics

Injection system (VEPP-5)

500 MeV Linac

Damping ring

Transfer line

Made in **BINP**

Collider parameters

Energy	1.0 GeV	1.5 GeV	2.0 GeV	2.5 GeV			
Circumference	813.1 m						
Emittance hor/ver	8 nm/0.04 nm @ 0.5% coupling						
Damping time hor/ver/long	50/50/25 ms 30/30/15 ms						
Bunch length	21 mm	12 mm	10 mm	10 mm			
Energy spread	8.7.10-4	11.10-4	9.3·10 ⁻⁴	7.2·10 ⁻⁴			
Momentum compaction	8.73·10 ⁻⁴	8.81.10-4	8.82.10-4	8.83·10 ⁻⁴			
Damping wiggler field	50 kGs	50 kGs	35 kGs	10 kGs			
Synchrotron tune	0.007	0.012	0.009	0.008			
RF frequency	499.95 MHz						
Harmonic number	1356						
Particles in bunch	7.10 ¹⁰						
Number of bunches	406 (10% gap)						
Bunch current	4.2 mA						
Total beam current	1.7 A						
Beam-beam parameter	0.135	0.135	0.121	0.097			
Luminosity	0.6·10 ³⁵	0.9·10 ³⁵	1.0·10 ³⁵	1.0·10 ³⁵			