

Study of noise characteristics of irradiated pixel detectors

<u>Dmitrii Nesterov</u>, Vladimir Zherebchevsky, Grigory Feofilov, Tatiana Lazareva, Alina Rakhmatullina, Nikolay Maltsev, Nikita Prokofiev on behalf of the ALICE collaboration

Saint-Petersburg State University

IV International Conference on Particle Physics and Astrophysics Session: Facilities and Advanced Detector Technologies Moscow October 23, 2018

Outline

- ALICE Inner Tracking System: upgrade strategy
- ALICE Pixel Detectors
- Study of the characteristics of ALICE pixel detectors
- Summary and next plans

ALICE Pixel Detectors (ALPIDE)

ALPIDE using TowerJazz 180nm CMOS Imaging Process

Small n-well diode (2-3 μ m diameter), ~100 times smaller than pixel \rightarrow low capacitance [4]

The gate oxide thickness of 3 nm \rightarrow robustness to Total Ionizing Dose

Possibility to apply back bias to the substrate can be used to increase depletion zone around NWELL collection diode: S/N ratio increases, higher efficiency 4/13

ALICE Pixel Detectors (ALPIDE)

Pixel matrix of ALPIDE

15 mm

30 mm

The pixel matrix is divided into 32 regions.

In the space between each pair of double columns is a priority encoder circuit that performs the asynchronous reading of a signal from the pixels in these columns.

The edge of the detector also presents Periphery logic, Analog and Digital pads and Power circuits.

[2]

In this report: investigations of two irradiated and one non-irradiated detectors at different temperatures.

ALICE pixel detectors – ALPIDE (final version) [5]

Detectors were irradiated with X-rays with V_{bb} = -3V applied

Chip W8R22 – 60 krad (low dose)

Chip W7R12 – 300 krad (high dose)

Experimental setup with a cryogenic module.

Allows us to cool the detectors down to -120°C and to heat them up to +60°C.

the current of the detector digital part vs. back bias voltage (Vbb).

1. After irradiation with high dose the current increased;

2. With increasing temperature the current increases;

3. With decreasing temperature, the current decreases. Starting at a temperature -60 °C, for irradiated (high dose) chip the digital current at $V_{bb} = 0$ V has the same values as before irradiation.

```
Chip W7R12 – 300 krad (high dose), detector was irradiated at V_{bb} = -3V.
```

results of noise test.

Chip W7R12 – 300 krad (high dose):

temperature

* For low dose irradiated chip and non-irradiated chip fake-hit rate DID NOT change over the full temperature range: from -105 °C to +30°C 9/13

results of cluster analysis (size of cluster vs. temperature).

Summary

- The cryogenic module was constructed for investigations of the characteristics of the irradiated ALICE pixel detectors. The investigations of characteristics of some samples of irradiated ALPIDE sensors were carried out at temperatures from +55°C to -105°C;
- The detectors meet the requirements of the ALICE collaboration [1] in terms of noise and FHR and this type of sensors is being used in the ongoing upgrade of the Internal Tracking System. The ALICE upgrade preparations are well on-track for new physics studies after 2020;
- Several effects of noise characteristics dependence on temperature, that were discovered in the given samples of irradiated detectors, are planned to be studied further including the performance of sensors at cryogenic temperatures that might be useful for future applications.

Thank you for attention!

Literature

- 1) The ALICE Collaboration. "Technical Design Report for the Upgrade of the ALICE Inner Tracking System". In: J. Phys. G41 (2014), p. 087002.
- 2) L.Musa, ECFA High Luminosity LHC Experiments Workshop, Aix-Les Bains, 3-6 October 2016, https://indico.cern.ch/event/524795/timetable/
- 3) Felix Reidt CERN-THESIS-2016-033
- V.I. Zherebchevsky, et. al., «New pixel detectors for alice at lhc and for nica experiments»,
 XXIV International Baldin Seminar On High Energy Physics Problems Dubna, September 17-22, 2018
- 5) V.I. Zherebchevsky, "ALPIDE at cryogenic temperatures", ITS upgrade characterisation WP5 meeting at CERN, 4.10.2017, <u>https://indico.cern.ch/event/670889/</u>
- 6) M. Mager, "ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITSupgrade" Nuclear Instruments and Methods in Physics Research A 824 (2016) 434–438

BACK-UP SLIDES

ALICE Pixel Detectors (ALPIDE family)

TR structure

ALICE Pixel Detectors (ALPIDE family)

Pixel detector general requirements

(from Technical Design Report for the Upgrade of the ALICE ITS)

Parameter	Inner Barrel (IB)	Outer Barrel (OB)	ALPIDE Performance
Silicon thickness	50 µm	100 µm	
Chip dimension	15 mm x 30 mm	15 mm x 30 mm	
Spatial resolution	5 µm	10 µm	5 μm (IB), 5 μm (OB)
Power density	< 300 mW/cm ²	< 100 mW/cm ²	40 mW/cm ² (IB), 30 mW/cm ² (OB)
Max. integration time	30 µs	30 µs	10 µs
Detection efficiency	>99%	>99%	>99% Upper limit!
Fake-hit rate	<10 ⁻⁵ (TDR),<10 ⁻⁶ * /event/pixel for IB and OB		<<<10 ⁻⁶ /event/pixel
Total Ionizing Dose	270 krad 2.7 Mrad*	10 krad, 100 krad*	Up to 500 krad
Non-Ionizing Energy Loss (1 MeV n _{eq} /cm ²)	1.7 x 10 ¹² (TDR), 1.7 x 10 ¹³ *	1.7 x 10 ¹¹ (TDR), 1.7 x 10 ¹² *	Up to 1.7 x 10 ¹³

radiation load integrated over the approved program (~ 6 years of operation) *revised numbers with respect to ALICE TDR (factor 10)

[1]

Full-scale Pixel Detector prototypes (pALPIDE -1,2,3)

A comprehensive scheme for the pixel front-end circuit **Including all possible variations**

For pALPIDE-1,2

Study of the characteristics of full-scale Pixel Detector prototypes

8

Before irradiation the threshold was $\sim 85 \text{ e}$,

after irradiation (300 krad)

the threshold was ~ 45-50 e

Temperature, °C Before irradiation the noise was $\sim 6 e_{1}$ after irradiation (300 krad)

the noise was ~ 14 e

The threshold goes up both with increasing temperature and with lowering temperature, but initial value (before irradiation) of the threshold is not reached.

56

54

52

50

46

Threshold, e

10 20 30 40

The ALPIDE characteristics studies

Results for high dose irradiated chip Source test + Cluster analysis

ALICE

Chip W7R12

Triggers: 2000000

Source: 133Ba, chip temperature -115 °C

ALICE Pixel Detectors (ALPIDE family)

A general block diagram of pALPIDE-1,2

All the analogue signals required by the frontends are generated by a set of 11 (for pALPIDE-1,2) and 14 (pALPIDE-3) on-chip digital-to-analog converters (DACs).

The region readout units contain multi-event storage SRAM memories.

Hit data from the 32 region readout blocks are combined and transmitted on a parallel 8-bit output data port.

A top-level Control block provides full access to the control and status registers of the chip.

ALICE Pixel Detectors (ALPIDE)

The zero suppression is performed within the matrix. Address-Encoder Reset-Decoder circuit is employed. It can either be controlled by an external trigger signal or operated in continuous acquisition mode.

In-pixel amplification In-pixel discrimination In-pixel (multi-) hit buffer

Advantages

1. Analog signal is no longer driven over the column lines \rightarrow reduce power consumption and increase readout speed.

2. The realization of in-pixel discriminators: opportunity of readout, in which the digital outputs of the pixels are scanned by an encoder circuit that directly produces the address of hit pixels as output.

3. The circuit works in a way that the pixel hit register is reset after the read operation and the circuit will move on to the next hit pixel to encode its address. The procedure is iterated until the full pixel matrix is read out.