

A Monte Carlo Study of Hypernuclei production at NICA/MPD

M.Ilieva – JINR, Dubna, Russia, Plovdiv University "P. Hilendarski" Thesis Advisor: A. Zinchenko – JINR, Dubna, Russia

Outline

- * Motivation
- Analysis details
- Event reconstruction and detector preformance
- Model predictions
- Study of hypernuclei production

$$^{4}_{\Lambda}He \rightarrow ^{3}He + p + \pi^{-}$$
 $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$
 $^{3}_{\Lambda}H \rightarrow p + d + \pi^{-}$
 $^{4}_{\Lambda}H \rightarrow ^{4}He + \pi^{-}$

Summary

Physics motivation

- Understanding production mechanism of exotic objects.
- Enhanced production at heavy-Ion collisions.
- * Study of all populated regions in the three-dimensional chart of the nuclides.
- *Hyperon-nucleus and hyperonhyperon interaction can be investigated through hypernuclei.
- ❖Provide info on EOS of neutron stars.

More information for discovery of Hypernuclei:

DOI: 10.1080/14786440308520318

Event generators and data sets

Generator: DCM-QGSM, Au+Au @ 5A GeV central (0-3 fm),5x10⁵ and 6.1x10⁷ evens

- * **Detectors:** start version of MPD (TOF, TPC, ECAL, FHCal,FD)
- * Track acceptance criterion: $|\eta| < 1.3$, $N_{hits} \ge 15$
- * Particle identification
- Maximization of significance

Track Reconstruction and Detector Performance

MPD Particle Identification (PID)

PID is achieved by energy loss (TPC) and time-of-flight (TOF) measurements

Mass square calculated using the measurements of momentum (p), time-of-flight (T) and trajectory length (L)

$$m^2 = p^2 (\frac{c^2 T^2}{L^2} - 1)$$

 π/K separation up to 1.5 Gev/c

 π/p separation up to 3 GeV/c

Model predictions

Statistical hadronization model

DCM-QGSM

- * In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments.
- * Maximal yield predicted for \sqrt{s} =4-5A GeV (stat. model) (interplay of Λ and light nuclei excitation function).
 - → NICA energy range is ideally suited for the search of hypernuclei

Maximization of significance

- 1. Significance is defined as $S/\sqrt{(S+B)}$
- 2. Set of 6-8 cuts, for hypernuclei selection: χ^2_{π} (dca_{π}), χ^2_{p} (dca₂), χ^2_{3He} (dca₁), dca_M, dca_{VM}, path, angle between \boldsymbol{p} and \boldsymbol{r} of \boldsymbol{Y} .
- 3. Variation of all cuts with small steps and production of invariant mass distributions for each set of cuts.
- 4. Fitting to the sum of Gaussian and polynomial functions and computing the significance.
- 5. Selection of maximum significance with corresponding cuts .

Invariant mass at max. significance:

4
 _{Λ} $He \rightarrow ^3He+p+\pi^-$ & 4 _{Λ} $H \rightarrow ^4He+\pi^-$

DCM-QGSM, Au+Au @ 5A GeV, central (0-3 fm), 6.1x10⁷ events ~61 hours @6 kHz.

Expected yield of ⁴_AHe: for MPD (10 weeks) @ 5A GeV: 1.4*10⁵

Expected yield of ⁴_AH: for MPD (10 weeks) @ 5A GeV: 1.9*10⁵

Invariant mass at max. significance:

$${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-} \& {}^{3}_{\Lambda}H \rightarrow p + d + \pi^{-}$$

DCM-QGSM, Au+Au @ 5A GeV, central (0-3 fm), $5x10^5$ events - 30 minutes @6 kHz. PID in TPC & TOF

Expected yield of ${}^{3}_{A}H$: for NICA (10 weeks) @ 5A GeV: 8.1*10⁵

Efficiency vs detector acceptance cut

Factor	Eff,% ³ ₁H 2-prong	Eff,% ${}^{3}_{\Lambda}H$ 3-prong	Eff,% ⁴	Eff, % ⁴
Branching ratio	24.6	36.4	75.0	32.0
$ \eta < 1.3$	14.9	19.8	48.9	28.1
$ \eta < 1.3, \ p_T > 0.05 \text{ GeV/c}$	14.2	15.7	48.3	25.3
$ \eta < 1.3, \ p_T > 0.1 \text{ GeV/c}$	8.9	6.2	35	16.4
$ \eta < 1.3, \ p_T > 0.2 \text{ GeV/c}$	0.7	0.1	4.0	0.18
Reconstructed $ \eta < 1.3$	7.9	8.3	27.7	9.4
Maximum significance	0.8	1.0	2.3	0.3

IV ICCPA, 22 - 26 October 2018

Summary

- * MPD start version will provide a good opportunity for a study of the hypernuclei production at NICA.
- ❖ Procedures for reconstruction of different species hypernuclei have been developed.
- ❖ Mass resolution of 3 MeV/c² has been achieved.

Thank you for your attention!