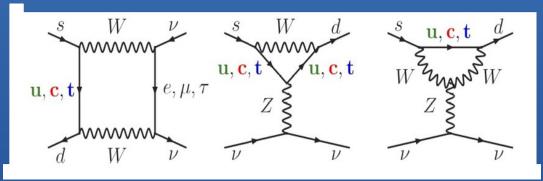


$K^+ \rightarrow \pi^+ \nu \nu$: first result from NA62

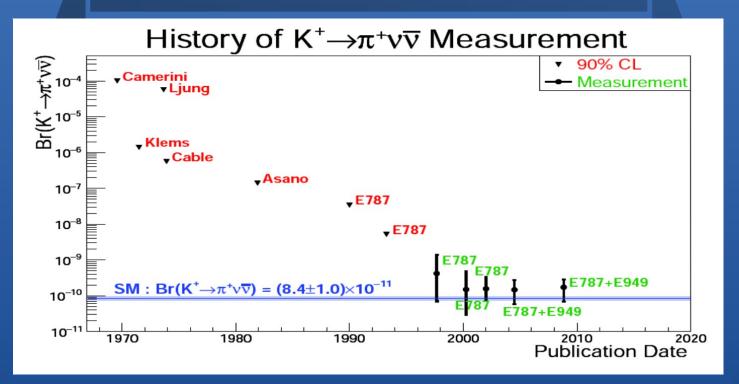

Victor Kurshetsov

IHEP, Protvino
on behalf of the NA62 collaboration

ICPPA2018 Conference Moscow, Russia - 22-26 October 2018

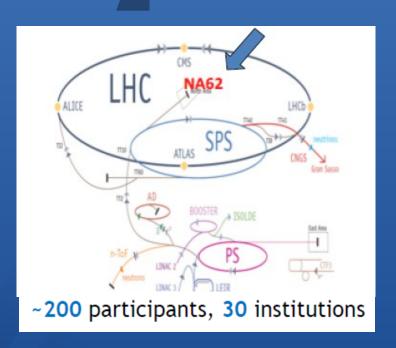
$K^+ \rightarrow \pi^+ \nu \nu$: motivation

FCNC loop process, highly suppressed, theoretically very clean



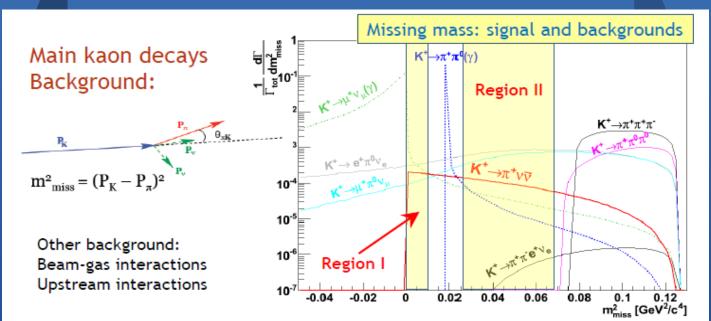
Well calculated inside the Standard Model [A.J. Buras et al., JHEP 1511 (2015) 033]

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}} \right]^{2.8} \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74}$$


Generic NP: not necessarily suppressed, can probe very high scales ~100 TeV → complementary to LHC in a search for New Physics

The NA62 goal

The goal: to perform the BR measurement with a 10% precision, comparable with the theoretical (SM) prediction


The Na62 experiment

- 2008: NA62 Approval
- 2009-14: Detector R&D
- 2014: Pilot Run
- 2015: Commissioning Run
- 2016-18: Physics Runs

NA62 aim: collect O(100) SM K⁺ $\rightarrow \pi^+ vv$ decays using a novel decay-in-flight technique.

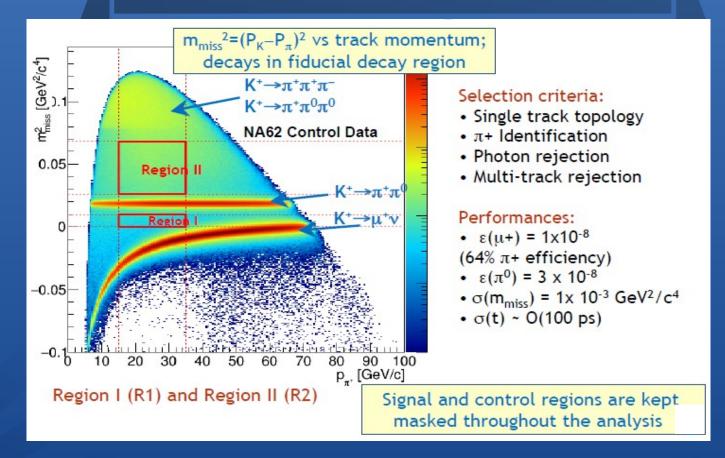
Signal and Background

92% of total BR(K+):

Outside the signal kinematic region $(m_{miss}, 15 \text{ GeV/c} < P(\pi) < 35 \text{ GeV/c})$. Signal region is split into Region I and Region II by the $K^+ \!\!\! \to \!\!\! \pi^+ \pi^0$ peak.

8% of total BR(K⁺) including multi-body: Span across the signal region (not rejected by kinematic criteria). Rejection relies on photon veto system, Particle ID, sub-ns timing.

The NA62 detector

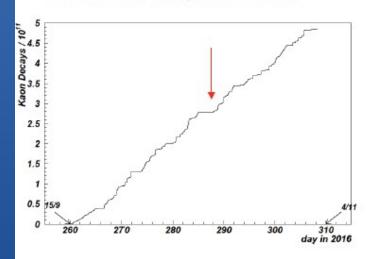

Un-separated hadron (p/π⁺/K⁺) beam. SPS protons: 400 GeV, 3×10¹²/spill. K⁺: 75GeV/c (±1%), divergence < 100μrad. 800 MHz beam rate; 45 MHz K⁺ rate; ~5 MHz K⁺ decays in fiducial volume Timing between sub-detectors O(100 ps).

Kinematic rejection $O(10^4)$ for $K^+ \rightarrow \pi^+ \pi^0$ and $K \rightarrow \mu^+ \nu$.

Photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression from $K^+ \rightarrow \pi^+ \pi^0 > 10^{-7}$.

Particle ID (RICH+LKr+HAC+MUV): muon suppression from $K \rightarrow \mu^+ \nu > 10^{-7}$.

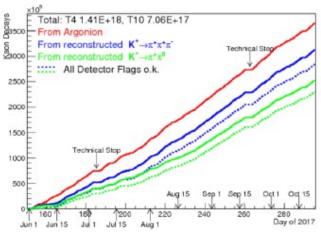
Signal selection



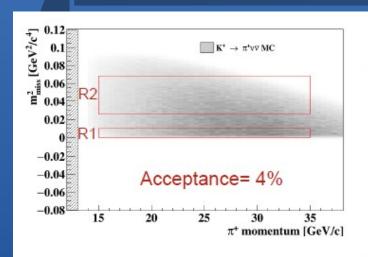
Na62 "Luminosity"

2016 run

 13×10^{11} ppp on target (40% nominal)


 $\sim 1 \times 10^{11} \text{ K}^+$ decays useful for $\pi \nu \nu$

2017 run


 20×10^{11} ppp on target (60% nominal)

 $> 3 \times 10^{12} \text{ K}^+$ decays collected

Result today presented on 2016 πνν data (4 weeks of data taking)

Single Event Sensitivity

Uncertainties:

$\delta SES (10^{-10})$
± 0.17
± 0.05
± 0.04
± 0.10
± 0.01
± 0.09
± 0.02
± 0.02
± 0.24

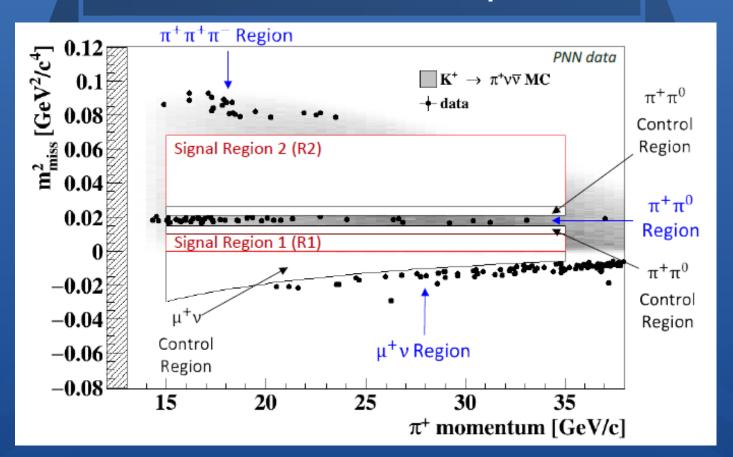
Control trigger $K^+ \rightarrow \pi^+ \pi^0$ used for normalization (10% acceptance) Number of kaon decays in the fiducial volume: $N_K = 1.21(2) \times 10^{11}$

SES =
$$(3.15 \pm 0.01_{stat} \pm 0.24_{sys}) \times 10^{-10}$$

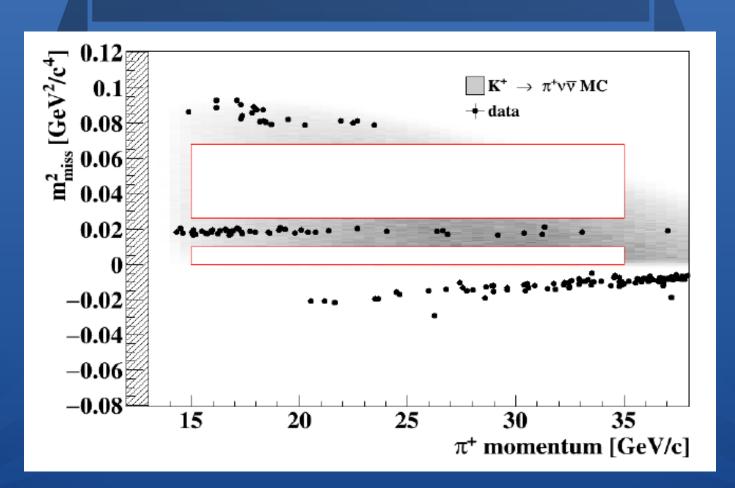
Background summary

Process	Expected events in R1+R2
$K^+ \to \pi^+ \nu \bar{\nu} \text{ (SM)}$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
Total Background	$0.15\pm0.09_{\mathrm{stat}}\pm0.01_{\mathrm{syst}}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$K^+ \to \mu^+ \nu(\gamma)$ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$K^+ \to \pi^+\pi^-e^+\nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
Upstream Background	$0.050^{+0.090}_{-0.030} _{stat}$

 $K^+ \rightarrow \pi^+ \pi^0$ (y) Data driven - Control region: 1 observed (1.5 expected)


 $K^+ \rightarrow \mu^+ \nu$ (γ) Data driven - Control region: 2 observed (1.1 expected)

 $\text{K}^+\!\!\to\!\!\pi^+\pi^-\,\text{e}^+\,\nu_{\rm e}$ Estimated with 400M MC decays - good agreement across 5 validation samples


Upstream background (accidentals and interactions)

Data driven - Controlled by geometrical and kaon-pion matching

Data 2016 Sample

Data 2016 result

Data 2016 Result

Data 2016 Results

Events observed	1
Single Event Sensitivity	$(3.15 \pm 0.01_{\text{stat}} \pm 0.24_{\text{syst}}) \times 10^{-10}$
Expected Background	$0.15 \pm 0.09_{\text{stat}} \pm 0.01_{\text{syst}}$

Obtained Upper Limit:

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10}$$
 @ 90 % CL $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10}$ @ 95 % CL

For Comparison:

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 2.8^{+4.4}_{-2.3} \times 10^{-10}$$
 @ 68 % CL $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \times 10^{-10}$ SM prediction $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 1.73^{+1.15}_{-1.05} \times 10^{-10}$ BNL 949/E787

NA62 K+ $\rightarrow \pi^+ \nu \nu$ prospects

Analysis of data collected in 2017 started:

- √ 20 times more data than the presented statistics
- Expect improvement on signal acceptance, background reduction and reconstruction efficiency

2018 data taking on-going (April - November 2018)

Expect 20 SM events before LS2

Data taking after LS2 recommended by SPSC, to be approved

The new NA62 decay in flight technique works

Spare Slides

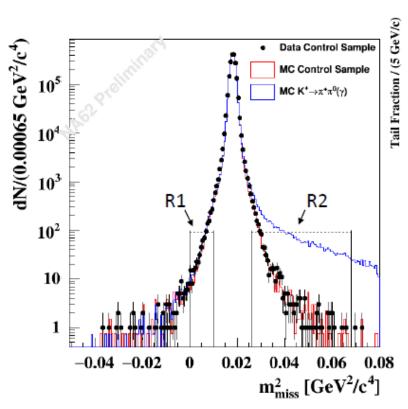
SES Definition

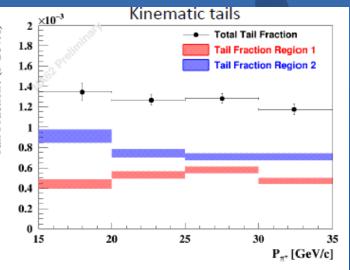
- Normalization: $K^+ \to \pi^+ \pi^0$ from control data
- · Same $\pi^+ \nu \bar{\nu}$ selection: γ , multiplicity rejection not applied; m_{miss}^2 cuts modified

$$N_K = \frac{N_{\pi\pi} \cdot D}{A_{\pi\pi} \cdot BR_{\pi\pi}}$$

$$SES = \frac{1}{N_K \sum_{j} \left(A_{\pi\nu\nu}^j \cdot \epsilon_{RV}^j \cdot \epsilon_{trig}^j \right)}$$

N_{K}	Number of K^+ decays	ϵ_{RV}	Random veto efficiency
$N_{\pi\pi} \sim 6 \cdot 10^6$	Number of $K^+ \rightarrow \pi^+ \pi^0$	$\epsilon_{ m trig}$	Trigger efficiency
$A_{\pi\pi}{\sim}~0.1$	Normalization acceptance	$A_{\pi \nu \nu}$	Signal acceptance
D = 400	Control Trigger Downscaling	J	π^+ momentum bin


$$N_{K^+} = (1.21 \pm 0.02) \times 10^{11}$$


$K^+ \to \pi^+ \pi^0$ Background

Events in
$$\pi^+\pi^0$$
 region after
$$\frac{\pi^+\nu\overline{\nu} \text{ selection}}{N_{\pi\pi}^{exp}(region)} = \sum_{\substack{(j) \\ \downarrow}} \left[N_{\pi\pi}(\pi^+\pi^0)_j \cdot f_j^{kin}(region) \right]$$
 Expected events Fraction of events in region region
$$\pi^+\text{momentum bin}$$

- $f_j^{kin}(region)$ measured: $\pi^+\pi^0$ sample selected tagging the π^0 with 2 γ' s in LKr
- MC studies with and without π^0 tagging
- π^0 and kinematic rejection assumed independent

$K^+ \rightarrow \pi^+ \pi^0$ Background

Number of expected events

\mathbf{Region}	$\pi^+\pi^0$
R1	$0.022 \pm 0.004_{stat} \pm 0.002_{syst}$
R2	$0.037 \pm 0.006_{stat} \pm 0.003_{syst}$