

Aleksei Popov (NRC "Kurchatov Institute" - IHEP, Protvino) on behalf of the DØ Collaboration

The New Results from Multi-quark Exotic States Searches at DØ Experiment

IV International Conference on Particle Physics and Astrophysics October 26, 2018

Multi-quark States

~20 multi-quark states were observed since 2003 with high significance. Important examples of four-quark states: X(3782) \rightarrow J/ $\psi \pi \pi$, Z_c(4430) $\rightarrow \psi$ (2S) π , X(4140) \rightarrow J/ $\psi \phi$; pentaquarks: P_c(4380) \rightarrow J/ ψ p, P_c(4450) \rightarrow J/ ψ p.

Recent review: Olsen, Skwarnicki, Zieminska, Rev. Mod. Phys. 90, 015003 (2018)

Four-quark states

Meson-meson molecule – two white states loosely bound by a pion exchange. Compact tetraquark – diquark-antidiquark pair connected by color forces.

Evidence for $B_s \pi$ state, $B_s \rightarrow J/\psi \phi(1020)$

V.M. Abazov et al (D0 Collaboration), Phys. Rev. Lett. 117, 022003 (2016)

A. Popov (NRC "Kurchatov Institute" - IHEP, Protvino)

Systematic uncertainties

Background shape description, background reweighting, B_s mass scale (MC and data), detector resolution and missing neutrino effect, P-wave Breit-Wigner.

Significance with systematics

without ΔR cut: 3.4 σ with ΔR cut 3.2 σ

Production ratio of X(5568) to B_s

 $\rho(X(5568)/B_s) =$ 7.3^{+2.8}_{-2.4}(stat)^{+0.6}_{-1.7}(syst)%

Comparison with hadronic channel

	Semileptonic		Hadronic (from Ref. [15])	
	Cone cut	No cone cut	Cone cut	No cone cut
Fitted mass, MeV/c^2	$5566.4^{+3.4}_{-2.8}$	$5566.7^{+3.6}_{-3.4}$	$5567.8 \pm 2.9^{+0.9}_{-1.9}$	5567.8
Fitted width, MeV/c^2	$2.0^{+9.5}_{-2.0}$ $^{+2.8}_{-2.0}$	$6.0^{+9.5}_{-6.0}{}^{+1.9}_{-4.6}$	$21.9 \pm 6.4^{+5.0}_{-2.5}$	21.9
Fitted number of signal events	121^{+51}_{-34}	$139^{+51}_{-63}^{+11}_{-32}$	$133\pm31\pm15$	$106 \pm 23(\text{stat})$
Local significance	4.3σ	4.5σ	6.6σ	4.8σ
Significance with systematics	3.2σ	3.4σ	5.6σ	
Significance with LEE + systematics			5.1σ	3.9σ

Results in semileptonic channel are compatible with those in hadronic channel within uncertainties.

Simultaneous fit to hadronic and semileptonic channels

$\sum_{i=1}^{250} D0 \text{ Run II, 10.4 fb}^{-1}$ $\sum_{i=1}^{300} D0 $	a) a 300 300 250 200 200 100 100 5.9 0 300 200 0 300 200 0 300 0 300 0 300 0 300 100 0 0 0 0 0 0 0 0 0 0 0 0	D0 Run II, 10.4 fb ⁻¹ $\downarrow \downarrow $	(b) Semileptonic Data Hadronic Data $\downarrow \downarrow $
	Cone	cut	No cone cut
Fitted mass, MeV/c^2	$5566.9^{+3.2}_{-3.1}$ (sta	$t)^{+0.6}_{-1.2}(syst)$ 5565.	$8^{+4.2}_{-4.0}(\text{stat})^{+1.3}_{-2.0}(\text{syst})$
Fitted width, MeV/c^2	$18.6^{+7.9}_{-6.1}$ (stat)	$^{+3.5}_{-3.8}(\text{syst})$ 16.3	$^{+9.8}_{-7.6}(\text{stat})^{+4.2}_{-6.5}(\text{syst})$
Fitted number of hadronic signal events	131^{+37}_{-33} (stat)	$^{+15}_{-14}(\text{syst})$ 99	$^{+40}_{-34}(\text{stat})^{+18}_{-33}(\text{syst})$
Fitted number of semileptonic signal events	$147^{+42}_{-37}(\text{stat})$	$^{+17}_{-16}(\text{syst})$ 111.	$7^{+46}_{-39}(\text{stat})^{+20}_{-38}(\text{syst})$
χ^2/ndf	94.7/(10	(0-6)	54.2/(50-6)
<i>p</i> -value	2.2×1	0^{-14}	1.9×10^{-8}
Local significance	7.60	5	5.6σ
Significance with LEE	6.90	5	5.0σ
Significance with LEE + systematics	6.70	5	4.7σ

Significance increases with addition of semileptonic sample

Published: V.M. Abazov et al (D0 Collaboration), Phys. Rev. D 97, 092004 (2018)

World comparison

Analysis	Production ratio (B _s / X(5568))	Reference
D0 (J/ψ φ)	8.6 ± 1.9 ± 1.4%	PRL 117,022003(2016)
D0 (μ D _s)	7.3 ^{+2.8} -2.4 ^{+0.6} -1.7%	PRD 97, 092004 (2018)
LHCb	< 2.4% (p _T (B _s ⁰) > 10 GeV)	PRL 117,152003 (2016)
CMS	< 1.1% (p _T (B _s ⁰) > 10 GeV)	PRL 120, 202005 (2018)
ATLAS	< 1.5% (p _T (B _s ⁰) > 10 GeV)	PRL 120, 202007 (2018)
CDF	< 6.7% (2.3 ± 1.9 ± 0.9%)	PRL 120, 202006 (2018)

LHC experiments do not observe X(5568), but CM energy is rather different. CDF results is in $\sim 2\sigma$ tension with DØ, kinematic selections vary substantially. Without theoretical model for X(5568) production and decays it is hard to compare various experiments quantitatively.

A search for Z_c(3900) at DØ experiment

 $Z_c^{\pm}(3900)$ was discovered in 2013 by Belle and BESIII in the process: $e^+e^- \rightarrow Y(4260) \rightarrow Z_c^{\pm}(3900) \pi^{\mp},$ $Z_c^{\pm}(3900) \rightarrow J/\psi \pi^{\pm}.$

Y(4260): two interfering resonances $\psi(4260)$ and $\psi(4360)$ (BESIII).

- Which component decays to $Z_c^{\pm}(3900)$?
- Are there decays

 $H_b \rightarrow Y(4260) \left(\rightarrow Z_c^{\pm}(3900) \pi^{\mp} \right) + anything$

 ${\rm H}_b \to Y(4260) + anything, Y(4260) \to {\rm Z}_c^\pm(3900) \ \pi^\mp, \ {\rm Z}_c^\pm(3900) \to J/\psi \ \pi^\pm$

- 10.4 fb⁻¹ of $p\overline{p}$ data at 1.96 TeV.
- J/ψ+2tracks, p¹_T > 1 GeV, p²_T > 0.8 GeV, opposite charge.
- Veto $K^* \to K\pi(\pi K), \phi \to KK, \gamma$ conversion.
- Displaced vertex: $L_{xv}(J/\psi \pi^{\pm})/\sigma(L_{xv})>5$, $IP_{xv}(\pi^{\pm})/\sigma(IP)>2$

• Vertex fits: $J/\psi \pi^{\pm} \chi^2 < 10$, adding extra pion $\delta \chi^2 < 6$.

• Select events with displaced $J/\psi \pi^+\pi^-$ vertices, L_{xy} distribution has a slope consistent with B hadron decays lifetime.

• $4.1 < M(J/\psi \pi^+\pi^-) < 5.0 \text{ GeV}.$

Systematic uncertainties:

Mass calibration, mass resolution, background shape (different degrees of Chebyshev polynomials), bin size, signal model (different Breit-Wigner forms), natural width variations. Fit to data Background parametrization: Chebyshev polynomials. Signal parametrization: S-wave Breit-Wigner smeared with resolution (17 MeV). Γ fixed to PDG value (28.2 MeV). 4.2< M(J/ ψ $\pi^+\pi^-$) < 4.7 GeV.

Results

$$\begin{split} \mathbf{M_{x}} &= \mathbf{3895.0} \pm \mathbf{5.2}(\textit{stat})^{+4.0}_{-2.7}(\textit{syst}) \\ & \text{MeV,} \end{split}$$

 $N_{ev} = 505 \pm 92(stat) \pm 64(syst).$

Local significance: 5.60

Significance with systematics: 4.6 σ

Since $Z_c(3900) \rightarrow J/\psi \pi$ and $B_d^0 \rightarrow J/\psi K^*$ have the similar topology and efficiencies, they are cancel out in the ratio

 $\frac{N(Z_c(3900) \to J/\psi \pi)}{N(B_d^0 \to J/\psi K^*)} = 0.085 \pm 0.019$

Belle Collaboration did not see a significant signal from $Z_c(3900)$ in $\overline{B}_d^0 \rightarrow J/\psi \ \pi^+ K^-$. In our case the mass spectrum for $J/\psi \ \pi^+$ also show no indication of the $Z_c(3900)$ $(5.15 < M(J/\psi \ \pi^+ K^-) < 5.4 \ GeV$, no K^*) Upper limit on the ratio to the $B_d^0 \rightarrow J/\psi \ K^*$ process of 0.015 (at 90% CL) is obtained.

- We confirm production of X(5568) state in proton-antiproton collisions at 1.96 TeV with an independent data set with semileptonic decay of B⁰_s meson.
- X(5568) properties in hadronic and semileptonic channels are consistent.
- Combined significance of X(5568) state observation in these two channels is 6.7σ.
- DØ observed $Z_c^{\pm}(3900)$ exotic state decaying to $J/\psi \pi^{\pm}$ in proton-antiproton collisions at 1.96 TeV with 4.6 σ significance.
- Measured mass of $Z_c^{\pm}(3900)$ is $M_x = 3895.0 \pm 5.2(stat)_{-2.7}^{+4.0}(syst)$ MeV consistent with Belle and BESIII measurements.
- Ratio $\frac{N(Z_c(3900) \to J/\psi \pi)}{N(B_d^0 \to J/\psi K^*)} = 8.5 \pm 1.9 \%.$
- Published in Phys. Rev. D98, 052010 (2018).

Backup slides

Background parametrization

Background distribution is obtained from MC and reweighted to data.

 $F_{bgr}(m) = (C_1 \cdot m + C_2 \cdot m^2 + C_3 \cdot m^3 + C_4 \cdot m^4) \times exp(C_5 \cdot m + C_6 \cdot m^2), \text{ where } m = M - M_{thr}$

Several alternative parametrizations of the background were used to model the background for background shape systematics estimation.

Alternative parametrizations

1. $F_{bgr}(M) = (C_1 + C_2 \cdot m^2 + C_3 \cdot m^3 + C_4 \cdot m^4) \times exp(C_5 \cdot m + C_6 \cdot m^2),$ where $m = M \cdot \Delta, \Delta = 5.5 \text{ GeV/c}^2.$ 2. $F_{bgr}(M) = M \cdot \left(\frac{M^2}{M_{thr}^2} - 1\right)^{C_1} \times exp(C_2 \cdot M),$ where M_{thr} is a $B_s \pi$ threshold. 3. Histogram smoothing (one iteration of 353QH algorythm).

Systematic uncertainties

Source	Mass, MeV/c^2	Width, MeV/c^2	Event yield, events
Cone cut			
(i) Background shape description	+0.7; -0.3	+0.0; -1.0	+0.0; -26.6
(ii) Background reweighting	+0.1; -0.1	+0.4; -0.4	+3.9; -4.2
(iii) B_s^0 mass scale, MC simulation and data	+0.1; -0.3	+0.8; -1.0	+5.1; -7.8
(iv) Detector resolution	+0.9; -0.0	+2.7; -1.0	+6.5; -0.0
(v) <i>P</i> -wave Breit-Wigner	+0.0; -0.4	+0.0; -1.0	+0.0; -3.7
(vi) Missing neutrino effect	+1.0; -0.0		
Total	+1.5; -0.6	+2.8; -2.0	+9.1; -28.3
No cone cut			
(i) Background shape description	+0.0; -0.7	+0.7; -2.5	+4.8; -28.0
(ii) Background reweighting	+0.1; -0.1	+0.7; -0.7	+5.0; -5.0
(iii) B_s^0 mass scale, MC simulation and data	+0.3; -0.5	+1.0; -1.4	+7.5; -9.6
(iv) Detector resolution	+0.0; -0.5	+1.3; -2.6	+3.7; -6.4
(v) <i>P</i> -wave Breit-Wigner	+0.0; -0.2	+0.0; -2.4	+0.0; -7.0
(vi) Missing neutrino effect	+1.0; -0.0		
Total	+1.0; -1.0	+1.9; -4.6	+10.9; -31.5

b2

Systematic uncertainties

Systematic uncertainty	Mass (MeV)	Yield
Mass calibration	+3	< 1
Mass resolution	< 0.1	± 27
Background shape	± 0.4	± 53
Bin size	± 1.1	± 9
Signal model	± 2.4	± 3
Natural width variation	< 0.1	± 23
Total (sum in quadrature)	-2.7, +4.0	± 64

Cross-checks

- Two ranges of $p_T(\pi)$ from J/ $\psi \pi$ system (>1.5 or < 1.5 GeV).
- Three pseudorapidity ranges ($|\eta| < 0.9, 0.9 < |\eta| < 1.3, 1.3 < |\eta| < 2.0$).
- Z_c^+ and Z_c^- .
- Events in the high χ^2 tail.
- Various Run II periods.
- J/ψ mass window and sidebands.
- $M(\pi^+\pi^-)$ from $J/\psi \pi^+\pi^-$ system (>1.0 or < 1.0 GeV).
- Reversed IP cut on second track (to show predominant non-prompt production).
- Same sign pion pairs from $J/\psi \pi \pi$ system.

All cross-checks provided expected results.

The L_{xy} distribution was fitted with $\sim e^{-L_{xy}/\Lambda}$

 $Z_c(3900)$ →J/ψ π: Λ = 0.098 ± 0.030; B⁰→J/ψ K^{*}: Λ = 0.130 ± 0.004. Consistent with each other.

The two p_T distributions are also similar.