Measurement of $K^+ \rightarrow \mu^+ \nu_\mu \gamma$ decay form factors in OKA experiment

Vladimir Kravtsov, INR, Moscow
on behalf of OKA collaboration

IV Int. Conference on particle physics and astrophysics
22-26 October 2018, MEPhi, Moscow, Russia
$K \rightarrow \mu \nu \gamma$ decay

IB - inner bremsstrahlung, where photon is emitted from the charged particle in the initial or final state

SD - structure-dependent radiative decay, which involves the emission of a photon from the intermediate states in the transition

INT - possible interference of **IB** and **SD**

Differential cross section in K-meson rest frame

$$\frac{d\Gamma_{K\mu\nu\gamma}}{dx dy} = A_{IB}f_{IB}(x, y)$$

$$+ A_{SD}[(F_V + F_A)^2 f_{SD+}(x, y) + (F_V - F_A)^2 f_{SD-}(x, y)]$$

$$- A_{INT}[(F_V + F_A)f_{INT+}(x, y) + (F_V - F_A)f_{INT-}(x, y)]$$

where $x = 2E_\gamma/m_K$, $y = 2E_\mu/m_K$, c.m.s.

In lower order of χPT $O(p^4)$, $F_V = 0.0945$, $F_A = 0.0425$ and $F_V - F_A = 0.052$

We will measure $F_V - F_A$ difference that connects with **INT**- and **SD**-. First measurement of this difference was made by **ISTRAT+** (Phys.Lett. B695 (2011) 59-66)

$F_V - F_A = 0.21 \pm 0.04\,(stat.) \pm 0.04\,(syst.)$
\[K \to \mu \nu_\mu \gamma \text{ decay matrix} \]

Contribution of SD- to \(F_V - F_A \) is \(~20\) times lower
Main backgrounds

\(K^+ \rightarrow \mu^+ \nu_\mu \pi^0\) (K\(\mu\)3) with 1\(\gamma\) lost from \(\pi^0 \rightarrow \gamma \gamma\) (Br = 3.353%)

\(K^+ \rightarrow \pi^+ \pi^0\) (K2\(\pi\)) with 1\(\gamma\) lost from \(\pi^0 \rightarrow \gamma \gamma\) and \(\pi\) misidentification (Br = 20.66%)

\(K^+ \rightarrow \mu^+ \nu_\mu\) with 1\(\gamma\) background (Br = 63.55%)

\(K^+ \rightarrow \pi^+ \pi^- \pi^+\) (K3\(\pi\)) with 1\(\gamma\) background and \(\pi\) misidentification (Br = 5.58%)

Biggest background to INT- comes from K\(\mu\)3

\(K \rightarrow \mu \nu_\mu \pi^0\)

\(K \rightarrow \mu \nu_\mu \gamma\)

\(K \rightarrow \pi^+ \pi^0\)
OKA setup

Beam spectrometer, Decay volume (DV) with Veto system, Main magnetic spectrometer, 2 Gamma detectors (GAMS-2000, EGS), Muon identification (hadron calorimeter GDA-100 and MC), Matrix Hodoscope (MH).

1) Muon - beam $\times C_1 \times C_2 \times \overline{BK} \times MC$
2) Kaon - beam $\times C_1 \times C_2 \times \overline{BK}$
3) GAMS - beam $\times C_1 \times C_2 \times \overline{BK} \times E_{GAMS}$
4) 2 – 4 tracks - beam $\times C_1 \times C_2 \times \overline{BK} \times MH$

OKA beam is a RF-separated secondary beam of $70 GeV$ Proton Accelerator of IHEP, Protvino. Beam has up to 20% of kaons with momentum $17.7 GeV/c$ during analyzed Run 14 (November 2012).

Event selection

- GAMS trigger
- 1 Kaon beam track
- 1 secondary Muon
- 1 shower in GAMS > 1GeV
- Decay vertex inside decay volume DV
Method of $K \rightarrow \mu\nu\gamma$ decay selection

1. All x-y kinematical region was divided into x-stripes with width $\Delta x = 0.05$.

Next steps were applied for each X-stripe:
2. Apply a cut $Y_{min} < Y < Y_{max}$ in signal region and fill $\cos\theta_{\mu\gamma}$ plot. $\theta_{\mu\gamma}$ - angle between μ and γ in c.m.s.
3. Put a cut on $\cos\theta_{\mu\gamma}$ to reject background.
4. Fill M_K plot.
5. For the first iteration IB term was used only (Green color).
6. Simultaneous fit of all 3 histograms with MINUIT.

For correct estimation of statistical error σ_{exp} the errors of M_K histogram fit were used.
The cuts on Y for signal in 10 X-stripes.
Simultaneous fit has a good agreement with $1.3 < \chi^2 / NDF < 1.7$
For each X-stripe we have experimental event number N_{Data} from data fitting and IB event number N_{IB} from MC. Then we plot N_{Data}/N_{IB} as a function of X. For IB only we would have $N_{Data}/N_{IB} = 1$. For small X IB is dominated and INT- is negligible. For large X we see that N_{Data} also contains negative interference term. We fit N_{Data}/N_{IB} distribution with which is a sum of IB and INT-

$$p_{signal} = p0 \times (1 + p1 \times f \left(\frac{N_{INT-}}{N_{IB}} \right))$$

$p1 = F_v - F_A$

The result of fit

$$F_v - F_A = 0.134 \pm 0.021$$

The total number of selected $K \to \mu \nu \nu$ decay events is $\sim 100K$.

\[\begin{array}{|c|c|}
\hline
\chi^2 / ndf & 12.28 / 8 \\
p0 & 1 \pm 0.0 \\
p1 & 0.1343 \pm 0.0210 \\
\hline
\end{array} \]

Preliminary
Since analysis is complicated and can depends on width of X-stripes, Y and angle cuts and fit procedure we try to estimate all possible systematics. Next possibilities are considered:

1) Non ideal description of signal and background in MC – 1.5×10^{-2}
2) Left and right X limits (number of points in fit) – 5×10^{-4}
3) Width of X-stripes ($\Delta x = 0.035$ and 0.07 instead 0.05) – 1×10^{-2}
4) Y limits in X-stripes (FWHM instead full signal reg.) – 8×10^{-3}
5) Possible contribution of INT+ term ($E787$) – 1.8×10^{-2}

The total systematics from 5 possible sources is 0.027

Detail description of systematics estimation procedure are presented in Backup slides.
1) Largest statistics about **100K** events of $K \to \mu\nu\mu\nu$ has been found.

2) The negative INT–term has been selected and $F_V - F_A$ has been measured: $F_V - F_A = 0.134 \pm 0.021(\text{stat.}) \pm 0.027(\text{syst.})$

The presented result is preliminary.

3) The result is **2.4σ above χPT O(p4) prediction.**

 Fresh calculation in framework of the gauged nonlocal effective chiral action ($E\chi A$) gives $F_V - F_A = 0.081$ (arXiv:1810.06815 [hep-ph], Oct 16 2018).

 Our result is 1.6σ above $E\chi A$ prediction.

4) This result is comparable within the errors with similar analysis of ISTRA+ experiment: $F_V - F_A = 0.21 \pm 0.04(\text{stat.}) \pm 0.04(\text{syst.})$

5) **Measured stat. and syst. errors are ~2 times less than result of ISTRA+.**
Backup slides
Verification of the fit method

\[p_1 = F_V - F_A = 0.134 \]

Measured \(p_1 = F_V - F_A = 0.134 \) value and normalization factor \(p_0 = 1 \) were used to build new \(p_{signal} \) function

\[p_{signal} = p_0 \times (1 + p_1 \times f \left(\frac{N_{INT-}}{N_{IB}} \right)) \]

Since the \(N_{Data}/(N_{IB} + N_{INT-}) \) ratio does not depend on \(X \) the fit procedure is correct.

For additional checking the method we fit the original plot by

\[p_{signal} = p_0 \times (1 + (0.134 + p') \times f \left(\frac{N_{INT-}}{N_{IB}} \right)) \]

As we could suppose possible additional term \(p' = 3 \times 10^{-5} \) is about zero.
Systematics
1) Non ideal forms of signal and background

For estimation of systematic error from possible non ideal description of signal and background in MC, the error of each bin was scaled by $\sqrt{\chi^2/\text{NDF}}$ factor. χ^2 is obtained from simultaneous fit in each X-stripe.

New value of $F_V - F_A$ is consistent with the main one but the fit error is larger. We suppose σ_{form} depends as $\sigma^2_{\text{fit}} = \sigma^2_{\text{form}} + \sigma^2_{\text{stat}}$ and therefore

$\sigma_{\text{stat}} = 0.021$ \[\sigma_{\text{form}} = 0.0153 \]
Dependency $N_{\text{Data}}/N_{\text{IB}}$ on X was fitted by removing points at the left (right) edge. The result points were fitted by straight line for conservative estimate of systematics. The line slope multiplied by the resolution in X (from MC) gives systematic error.

Both errors are negligible.
We repeated the data analysis procedure for 2 other values of X-binning:

- $\Delta X = 0.035$, that is the worst X-resolution at maximal value of X = 0.6;
- $\Delta X = 0.07$ 2 times higher value.

$\sigma_X = 0.01$
FWHM cuts for selection of events were applied in Y-dependency for signal MC. Such cuts on Y are stronger than those used for main data analysis.

$\sigma_X = 0.008$
5) Possible contribution of INT+ term

\[p_{signal} = p_0 \times (1 + (F_V + F_A) \times f\left(\frac{N_{INT+}}{N_{IB}}\right) + (F_V - F_A) \times f\left(\frac{N_{INT-}}{N_{IB}}\right)) \]

Minimum of INT+ term

\[\chi^2 / \text{ndf} = 11.86 / 8 \]

\[p_0 = 0.9974 \pm 0.0056 \]

\[p_1 = 0.1521 \pm 0.0211 \]

\[p_{1_{\text{min}}} = 0.152 \]

Maximum of INT+ term

\[\chi^2 / \text{ndf} = 12.85 / 8 \]

\[p_0 = 1.003 \pm 0.007 \]

\[p_1 = 0.1165 \pm 0.0210 \]

\[p_{1_{\text{max}}} = 0.117 \]

\[F_V + F_A \text{ value was measured by E787 experiment (Phys. Rev. Lett. 85 (2000) 2256).} \]

\[|F_V + F_A| = 0.165 \pm 0.013 \]

2 fits were repeated with minimal and maximal value of this measured sum.

\[\sigma_{INT+} = 0.018 \]