International Conference on Particle Physics and Astrophysics, 25 October 2018, Moscow

Recent results on bottomonium(-like) states from Belle

Roman Mizuk

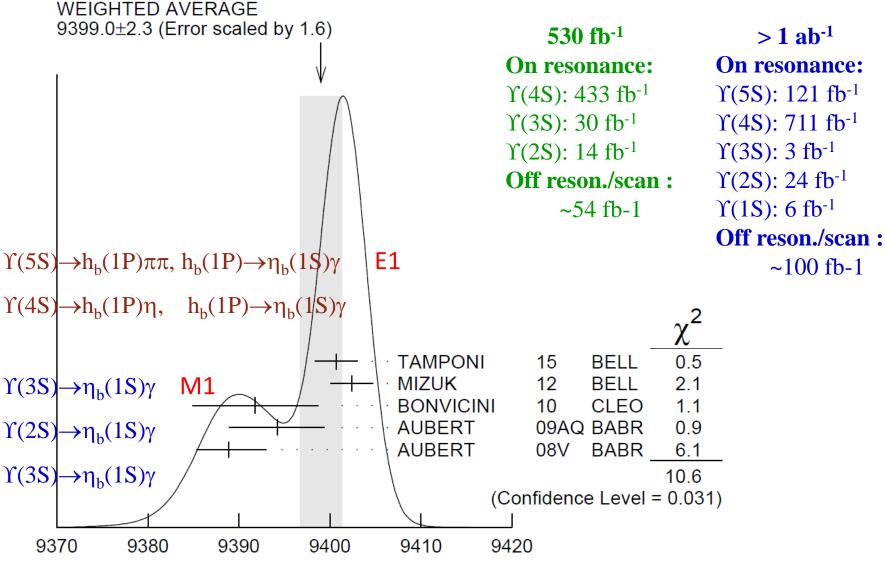
Lebedev Physical Institute, Moscow Institute of Physics and Technology

Outline:

Observation of $\Upsilon(2S) \rightarrow \eta_b(1S) \gamma$

arXiv:1807.01201

Observation of $\Upsilon(4S) \rightarrow \Upsilon(1S) \eta'$


PRL 121,062001(2018)

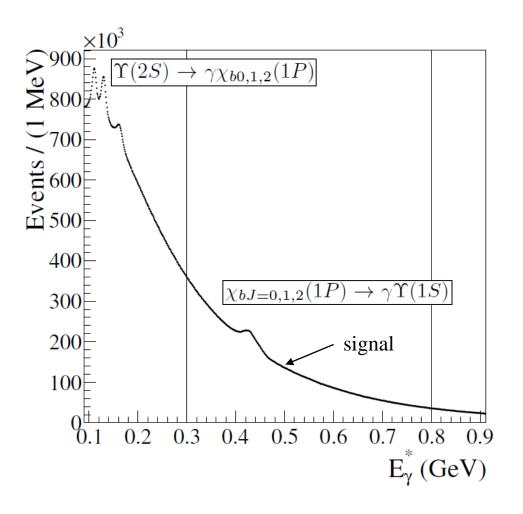
Energy scan of $e^+e^- \rightarrow \chi_{bJ}(1P) \omega$

arXiv:1806.06203

Observation of $\Upsilon(2S) \rightarrow \eta_b(1S) \gamma$

Introduction

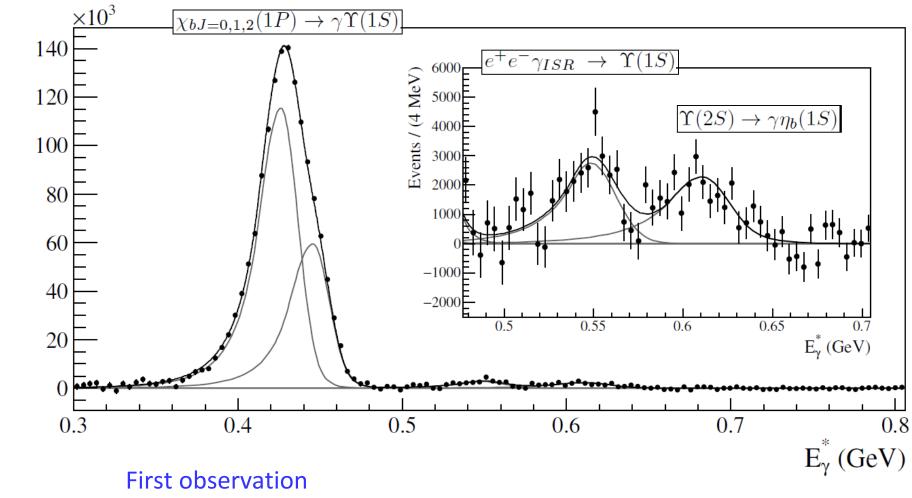
 $[\]eta_b(1S)$ MASS (MeV)


Method

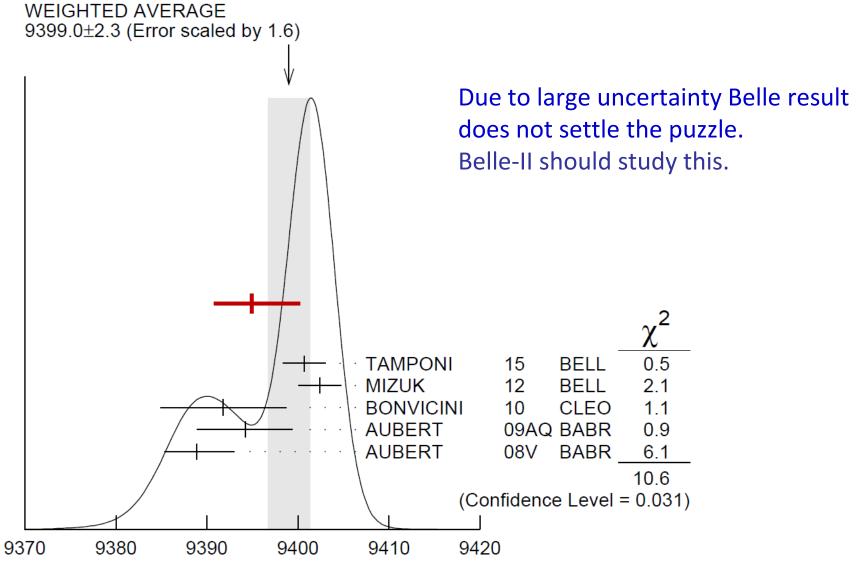
Use data collected at $\Upsilon(2S)$.

To search for $\Upsilon(2S) \rightarrow \eta_b(1S) \gamma$ plot energy spectrum of ALL photons.

<u>Selection:</u>


good quality of cluster barrel ECL only π^0 veto continuum suppr. via thrust

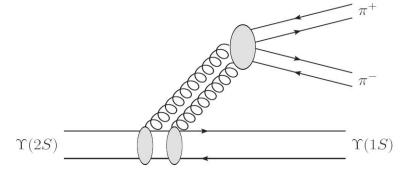
Result


Events / (4 MeV

arXiv:1807.01201

 $m_{\eta_b(1S)} = 9394.8^{+2.7+4.5}_{-3.1-2.7} \text{ MeV}/c^2$

Result



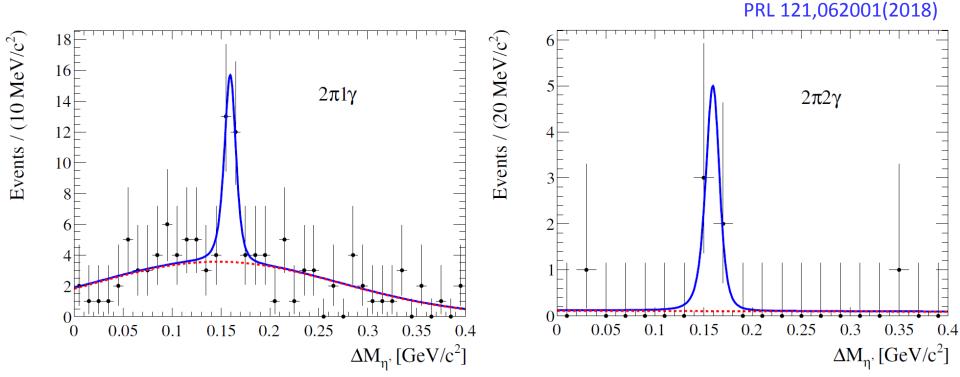
 $[\]eta_b(1S)$ MASS (MeV)

Observation of $\Upsilon(4S) \rightarrow \Upsilon(1S) \eta'$

Partial width (ke	
	In bottomon
5.7 ± 0.5	OZI suppress
$(9.3 \pm 1.5) \times 10^{-5}$	
0.89 ± 0.08	
$< 2 \times 10^{-3}$	
0.57 ± 0.06	
	$\Upsilon(2S)$
1.7 ± 0.2	- (-~)
4.0 ± 0.8	
1.8 ± 0.3	Υ(5S), Υ(6S)
45 ± 7	_ ()
238 ± 41	
39 ± 11	$\pi^+\pi^-$ transiti
33 ± 11	
428 ± 83	η transiti
204 ± 44	– Heavy C
153 ± 31	
84 ± 20	
28 ± 11	Ύ(4S), Ύ(5S)
32 ± 15	Ϋ́η/
33 ± 20	[/
~ 60	
150 ± 48	
2070 ± 440	Bondar, RM, Voloshin
1200 ± 300	MPLA32,1750025(2017)
	5.7 ± 0.5 $(9.3 \pm 1.5) \times 10^{-3}$ 0.89 ± 0.08 $< 2 \times 10^{-3}$ 0.57 ± 0.06 1.7 ± 0.2 4.0 ± 0.8 1.8 ± 0.3 45 ± 7 238 ± 41 39 ± 11 33 ± 11 428 ± 83 204 ± 44 153 ± 31 84 ± 20 28 ± 11 32 ± 15 33 ± 20 ~ 60 150 ± 48 2070 ± 440

In bottomonium hadronic transitions are OZI suppressed:

 Υ (5S), Υ (6S) – violation of OZI-rule.


π⁺π⁻ transitions: E1E1 gluons,
 η transitions: E1M2 gluons
 – Heavy Quark Spin Symmetry suppressed

Υ(4S), Υ(5S) – violation of HQSS. Υη / Υπ⁺π⁻, $\chi_{b1}\omega$ / $\chi_{b2}\omega$

 \Leftarrow B meson loops

Method

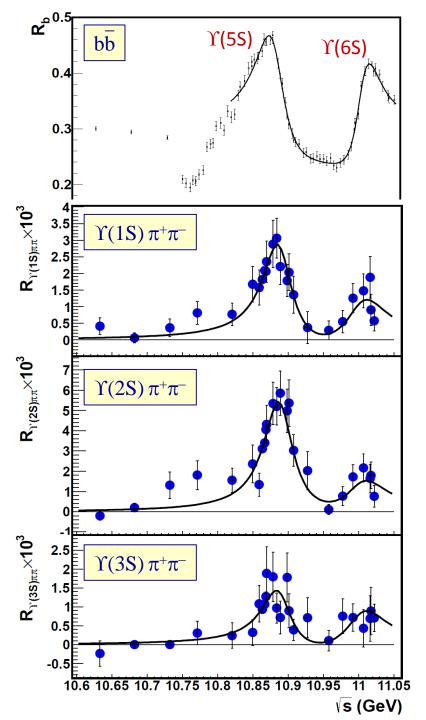
$$\begin{split} \Upsilon(4S) \to \Upsilon(1S) \eta' & \Upsilon(1S) \to \mu^+ \mu^- & \eta' \to \rho \gamma \to \pi^+ \pi^- \gamma \\ \to \pi^+ \pi^- \eta \to \pi^+ \pi^- \gamma \gamma \end{split}$$

 $\Delta M_{\eta'} = M(\Upsilon(4S)) - M(\Upsilon(1S)) - M(\eta')$

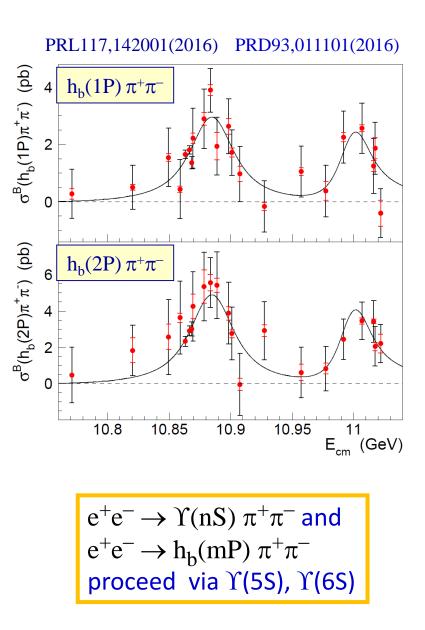
Transition	Partial width (keV)		
$\Upsilon(2S) \rightarrow$			
$\Upsilon(1S) \pi^+ \pi^-$	5.7 ± 0.5		
$\Upsilon(1S)\eta$	$(9.3 \pm 1.5) \times 10^{-3}$		
$\Upsilon(3S) \rightarrow$			
$\Upsilon(1S) \pi^+ \pi^-$	0.89 ± 0.08		
$\Upsilon(1S)\eta$	$< 2 \times 10^{-3}$		
$\Upsilon(2S) \pi^+ \pi^-$	0.57 ± 0.06		
$\Upsilon(4S) \to$			
$\Upsilon(1S) \pi^+ \pi^-$	1.7 ± 0.2		
$ \begin{array}{c} \Upsilon(1S) \eta \\ \Upsilon(2S) \pi^+ \pi \end{array} (4S) \rightarrow \Upsilon(1S) \end{array} $	$\eta' = \frac{4.0 \pm 0.8}{1.0 \pm 0.2} 0.70$	+0.18	
$\Upsilon(2S) \pi^+ \pi^- (4S) \gamma \Gamma(1S)$	1.8 ± 0.3	- 0.10	
$h_b(1P)\eta$	45 ± 7		
$\Upsilon(5S) \rightarrow$			
$\Upsilon(1S) \pi^+\pi^-$	238 ± 41		
$\Upsilon(1S)\eta$	39 ± 11		
$\Upsilon(1S) K^+ K^-$	33 ± 11		
$\Upsilon(2S) \pi^+ \pi^-$	428 ± 83		
$\Upsilon(2S)\eta$	204 ± 44	D	
$\Upsilon(3S) \pi^+ \pi^-$	153 ± 31	Pre	
$\chi_{b1}(1P)\omega$	84 ± 20	Μ	
$\chi_{b1}(1P) (\pi^+\pi^-\pi^0)_{\text{non-}\omega}$	28 ± 11	111	
$\chi_{b2}(1P)\omega$	32 ± 15	em	
$\chi_{b2}(1P) (\pi^+\pi^-\pi^0)_{\text{non-}\omega}$	33 ± 20		
$\Upsilon_J(1D) \pi^+\pi^-$	~ 60	em	
$\Upsilon_{J}(1D)\eta$	150 ± 48		
$Z_b(10610)^{\pm}\pi^{\mp}$	2070 ± 440		
$Z_b(10650)^{\pm}\pi^{\mp}$	1200 ± 300		

Results

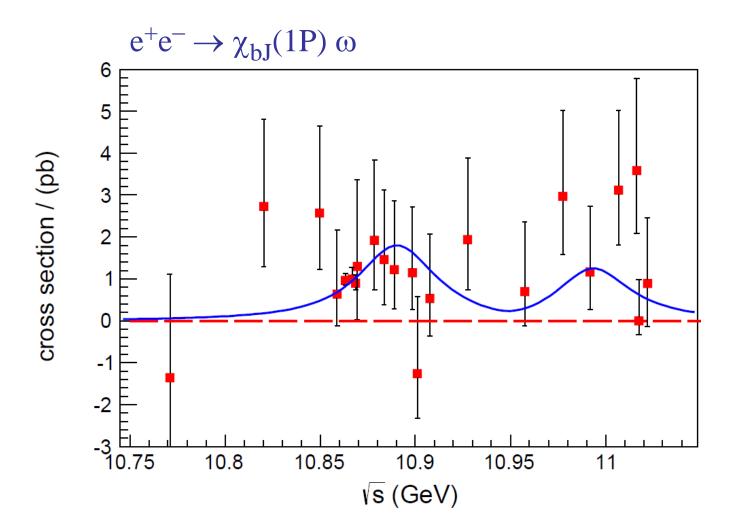
 $\mathcal{B}(\Upsilon(4S) \to \eta' \Upsilon(1S)) =$ (3.43 ± 0.88(stat.) ± 0.21(syst.)) × 10⁻⁵


$$R_{\eta'/\eta} = 0.20 \pm 0.06$$

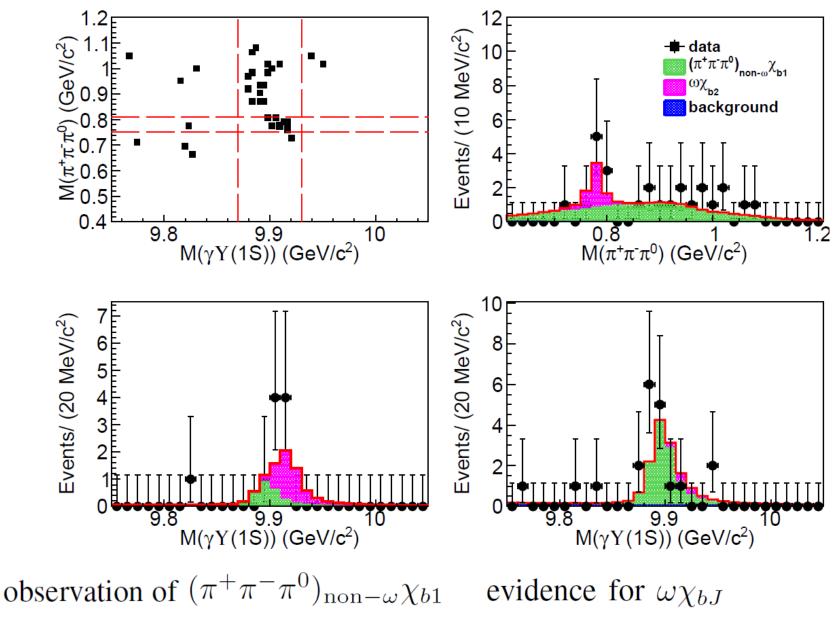
Predictions:


M. B. Voloshin, Mod. Phys. Lett. A 26, 773 (2011)

emission via hadron loops: $0.2 \le R_{\eta/\eta'} \le 0.6$ emission via gluons: enhanced by a factor 25


Energy scan of $e^+e^- \rightarrow \chi_{bJ}(1P) \omega$

Belle energy scans


Results

Production mechanism remains unestablished.

Results

Combined data in the $\Upsilon(6S)$ region

Conclusions

Analysis of Belle data on bottomonium is on-going

Observation of $\Upsilon(2S) \rightarrow \eta_b(1S) \gamma$

Observation of $\Upsilon(4S) \rightarrow \Upsilon(1S) \eta'$

Energy scan of $e^+e^- \rightarrow \chi_{bJ}(1P) \omega$

arXiv:1807.01201

PRL 121,062001(2018)

arXiv:1806.06203

On-going Belle analyses (to be reported soon):

Energy scan of BB, BB*, B*B*,.. cross sections Update on line shape of Z_b states in elastic channels

Search for $\Upsilon(5S) \rightarrow W_{hJ} \gamma \rightarrow (\Upsilon(1S)\pi^+\pi^-) \gamma$

Search for $\Upsilon(4S,5S) \rightarrow \eta_b(1S,2S) \omega$...

Your wishes on what should be (still) studied at Belle ?