

Study of P-wave B_s states at the CMS experiment

Sergey Polikarpov^{1,2}

¹LPI RAS, ²NRNU MEPhI

CMS-BPH-16-003, arXiv:1809.03578
Submitted to EPJC

Introduction (P-wave B_s⁰ states)

Orbital momentum L

Total angular momentum of light subsystem j

$$j = L \pm \frac{1}{2}$$

Total angular momentum $J = j \pm \frac{1}{2}$

$$J = \frac{3}{2} + \frac{1}{2} = 2 \qquad B_{s2}^* (5840)^0$$

$$J = \frac{3}{2} + \frac{1}{2} = 2 \qquad B_{s1}^* (5830)^0$$

$$L = 1$$

$$J = \frac{1}{2} + \frac{1}{2} = 1 \qquad B_{s1}^*$$

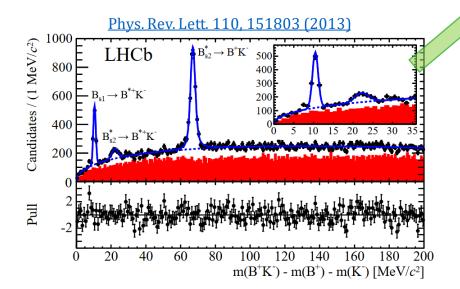
$$J = \frac{1}{2} + \frac{1}{2} = 1 \qquad B_{s1}^*$$

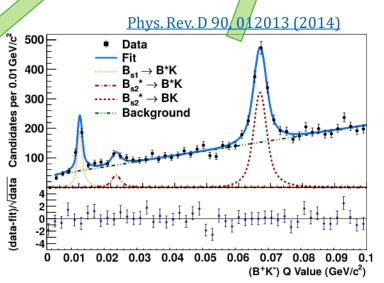
$$J = \frac{1}{2} + \frac{1}{2} = 1 \qquad B_{s1}^*$$

$$J = \frac{1}{2} - \frac{1}{2} = 0 \qquad B_{s0}^*$$

$$J = \frac{1}{2} - \frac{1}{2} = 0 \qquad B_{s0}^*$$

The decay $B_{s1} \to B^+ K^-$ corresponds to (in J^P) $1^+ \to 0^- 0^-$ and is forbidden $\frac{(need\ L=1\ to\ conserve\ J,\ but\ then\ P\ is\ not\ conserved)}{(need\ L=1\ to\ conserve\ J,\ but\ then\ P\ is\ not\ conserved)}$


The decay $B_{s1} \to B^{*+}K^{-}$ corresponds to (in J^{P}) $1^{+} \to 1^{-}0^{-}$ and $\frac{3}{2}^{-} \to \frac{1}{2}^{+}0^{-}$ in j^{P} In HQET j^{P} is also conserved \Rightarrow it cannot proceed in S-wave; but can proceed in D-wave.


Similarly, $B_{s2}^* \rightarrow B^+K^-$ and $B_{s2}^* \rightarrow B^{*+}K^-$ decays are expected to proceed in D-wave.

Introduction (previous results)

P-wave B_s states were observed and studied only by CDF, D0, and LHCb in B+K⁻ channel

Result	CDF 2008 [2]	D0 2008 [3]	LHCb 2013 [4]	CDF 2014 [5]
$N(\mathrm{B_{s2}^*} o \mathrm{B^+K^-})$	95 ± 23	125 ± 25	3140 ± 100	1110 ± 60
$N(\mathrm{B_{s2}^*} o \mathrm{B^{*+}K^-})$	_	_	307 ± 46	$?? \sim 100$
$N(\mathrm{B_{s1}} ightarrow \mathrm{B^{*+}K^{-}})$	39 ± 9	25 ± 10	750 ± 36	280 ± 40
$M(B_{s2}^*)$, MeV	5839.6 ± 0.7	5839.6 ± 1.3	5839.99 ± 0.21	5839.7 ± 0.2
$M(B_{s1})$, MeV	5829.4 ± 0.7	_	5828.40 ± 0.41	5828.3 ± 0.5
$M(B_{s2}^*) - M(B^+) - M(K^-)$, MeV	66.96 ± 0.41	66.7 ± 1.1	67.06 ± 0.12	66.73 ± 0.19
$M(B_{s1}) - M(B^{*+}) - M(K^{-})$, MeV	10.73 ± 0.25	11.5 ± 1.4	10.46 ± 0.06	10.35 ± 0.19
$\Gamma(B^*_{s2})$, MeV	_		1.56 ± 0.49	1.4 ± 0.4
$\Gamma(B_{s1})$, MeV	_	- //		0.5 ± 0.4

Data and event selection

2012 dataset (19.6 fb⁻¹), trigger optimized to select B \rightarrow J/ ψ ... decays, where J/ $\psi \rightarrow \mu^+ \mu^-$

B⁺ (B⁰) candidates obtained combining J/ψ with 1(2) tracks: B⁺ \rightarrow J/ψK⁺ and B⁰ \rightarrow J/ψK⁺ π ⁻

B meson vertex required to be displaced from the PV in the transverse (xy) plane

B meson momentum required to point to the PV in the xy plane

B+K- channel:

Prompt K⁻ selected to come from the same pp interaction as the B⁺

K+

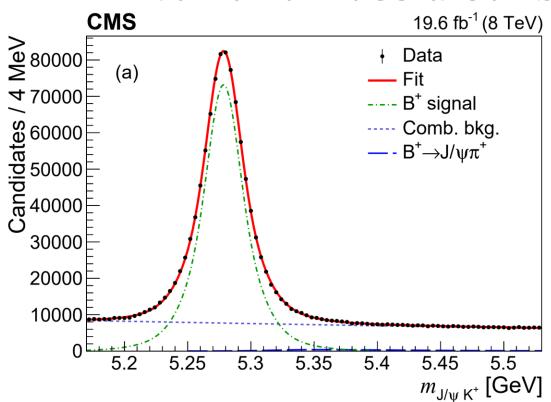
K-

B⁰K⁰_S channel:

 $M(K^+\pi^-)$ in ±90 MeV from $K^*(892)$ mass,

 $M(K^+K^-) > 1.035 \text{ GeV to cut out } B_s^0 \rightarrow J/\psi \phi$

 K/π mass assignment: chose the candidate closer to $K^*(892)$ mass


K_S⁰ is build from displaced 2-prong vertices

K_S momentum required to point to PV in the *xy* plane

more details: see backup

B⁺ invariant mass distribution

Modelled with triple Gaussian function with common mean for signal, exponential for bkg additional small contribution to account for Cabibbo suppressed $B^+ \rightarrow J/\psi \pi^+$ decay

The B⁺ invariant mass resolution is consistent between data and MC Effective resolution* is about 24 MeV $* \sigma_{eff} = \sqrt{f_1 \sigma_1^2 + f_2 \sigma_2^2 + (1 - f_1 - f_2) \sigma_3^2}$

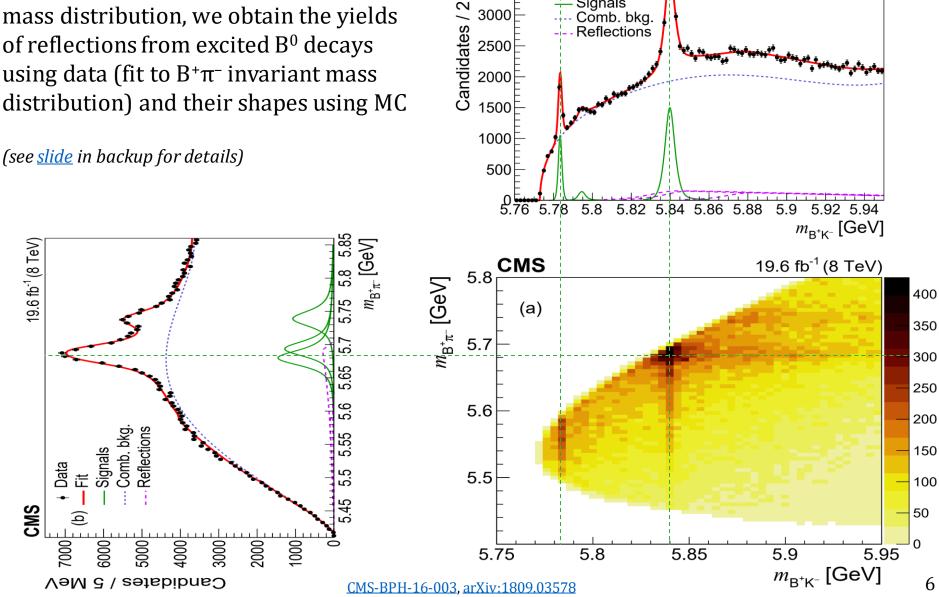
A small difference of \sim 3% is used in the estimation of the systematic uncertainties

B⁺h⁻ invariant mass distributions

CMS

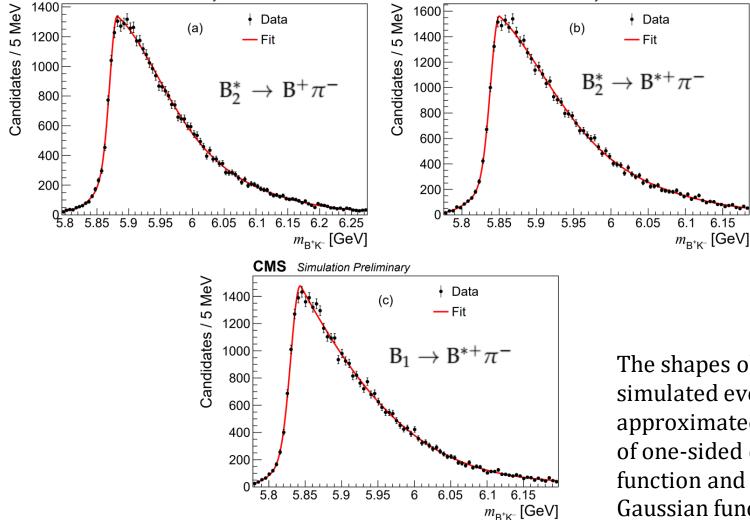
3500

3000


2500

Data

Signals


Comb. bkg. Reflections 19.6 fb⁻¹ (8 TeV)

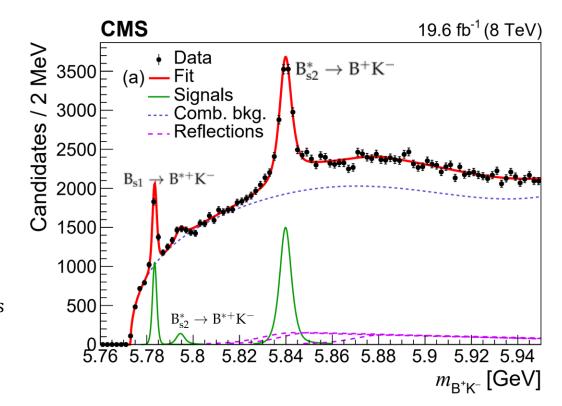
To describe the signal B+K- invariant mass distribution, we obtain the yields of reflections from excited B⁰ decays using data (fit to $B^+\pi^-$ invariant mass distribution) and their shapes using MC

Shape of reflections from $B^{*0} \rightarrow B^{(*)} + \pi^-$ decays in B^+K^- invariant mass distribution

CMS Simulation Preliminary

CMS Simulation Preliminary

The shapes obtained using simulated events are approximated with a product of one-sided double-Gaussian function and sum of two Gaussian functions

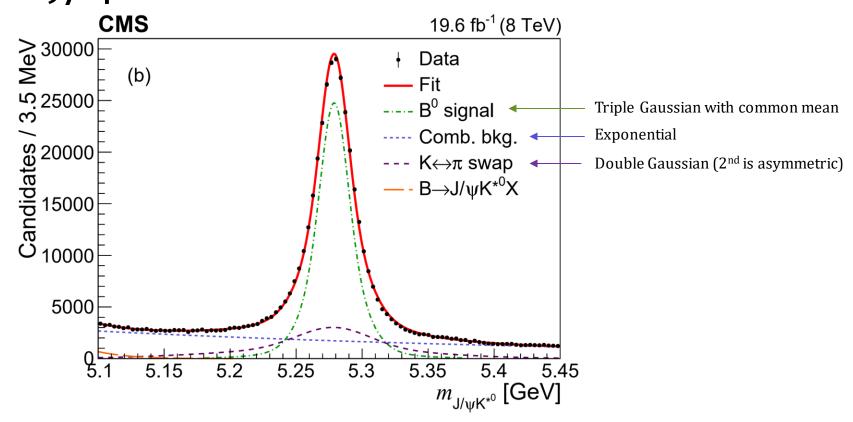

<u>CMS-PAS-BPH-16-003</u>

B⁺K⁻ invariant mass distribution

Now we fit B+K- invariant mass distribution:

3 D-wave RBW functions convolved with resolutions

- + $(x-x_0)^a \cdot Pol_6(x)$ for background, x_0 is threshold value
- + contributions from excited B^0 (shapes fixed to MC, yields fixed to the fit results to the $B^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ invariant mass distribution)



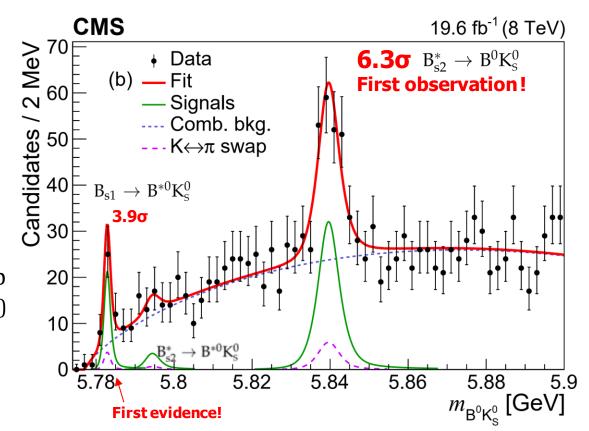
$$N(B_{s2}^* o BK)$$
 $N(B_{s2}^* o B^*K)$ $N(B_{s1} o B^*K)$ $\Gamma(B_{s2}^*)$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s2})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s2})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s2})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s1}$

$$M(B_{s2}^*) - M(B) - M(K)$$
, MeV $M(B_{s1}) - M(B^*) - M(K)$, MeV $M(B_{s2}) - M(B^*) - M(K)$, MeV $M(B_{s2}) - M(B^*) - M(B^*)$ $M(B_{s2}) - M(B^*) - M(B^*)$ $M(B_{s1}) - M(B^*) - M(B^*)$ $M(B_{s2}) - M(B^*)$ $M(B_{s1}) - M(B^*)$ $M(B_{s1$

$B^0K^0_S$ final state

$B^0 \rightarrow J/\psi K^+\pi^-$ invariant mass distribution

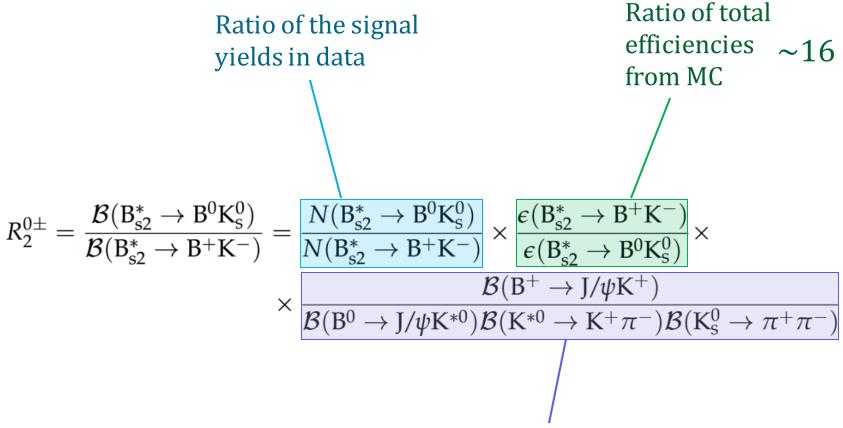
The resolution parameters and the shape of $K \leftrightarrow \pi$ swapped component are fixed from simulation (see backup)


Fraction of swapped component with respect to signal = $(18.9 \pm 3.0)\%$ in the B^0 signal region of $\pm 2\sigma$

B⁰K⁰ invariant mass distribution

Fit:

- 3 D-wave RBW functions convolved with resolutions
- \circ $(x-x_0)^a \bullet Pol_1(x)$ for bkg, x₀ is threshold value
- 3 contributions from $K \leftrightarrow \pi$ swap (yields fixed relative to signal: S*0.189)


 62.42 ± 0.48

 5.65 ± 0.23

$$N(B_{s2}^* o BK)$$
 $N(B_{s2}^* o B^*K)$ $N(B_{s1} o B^*K)$ $\Gamma(B_{s2}^*)$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s2})$, MeV $\Gamma(B_{s1})$, MeV $\Gamma(B_{s1}$

Measuring BF ratios

Known branching fractions from PDG

$$\mathcal{B}(B^+ \to J/\psi K^+) = (1.026 \pm 0.031) \times 10^{-3}, \ \mathcal{B}(K_s^0 \to \pi^+ \pi^-) = (0.6920 \pm 0.0005)$$

 $\mathcal{B}(B^0 \to J/\psi K^{*0}) = (1.28 \pm 0.05) \times 10^{-3}, \ \mathcal{B}(K^{*0} \to K^+ \pi^-) = (0.99754 \pm 0.00021)$

Formulae and efficiencies ratios for all 6 measured ratios are in backup

Sources of systematic uncertainty

Systematic uncertainties on the branching fraction ratios are related to:

Choice of the fit model

separate uncertainties related to the fits of $B^+\pi^-$, B^+K^- and $B^0K^0_S$ invariant mass distributions; largest deviation of the results under changes of the fit model is used as systematic uncertainty

> Track reconstruction efficiency (3.9% per extra track)

7.8% since 2 more tracks to reconstruct in $B^0K_S^0$ final state

Mass resolution

largest change of the resulting ratios under simultaneous variations of resolution by $\pm 3\%$

- Fraction of $K \leftrightarrow \pi$ swapped component largest change of the resulting ratios under variations of this fraction by $\pm 3\%$
- ► Uncertainty on m_{B^*} - m_B largest change of the resulting ratios under variations of m_{B^*} - m_B by ± PDG uncertainty
- \triangleright Non-K* contribution in B⁰→J/ψK+π⁻ decay estimated by fitting background-subtracted K+π⁻ invariant mass distribution
- Finite size of the simulation samples uncertainties from the previous slide

Results

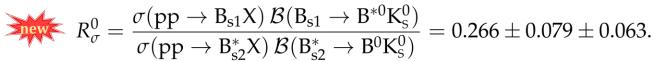
Uncertainties here are, respectively, statistical, systematic, related to PDG uncertainties

$$R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.432 \pm 0.077 \pm 0.075 \pm 0.021,$$

$$R_{1}^{0\pm} = \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})} = 0.49 \pm 0.12 \pm 0.07 \pm 0.02,$$

$$R_{2*}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.081 \pm 0.021 \pm 0.015,$$

$$R_{2*}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.081 \pm 0.021 \pm 0.015,$$


$$R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})} = 0.002 \pm 0.006 \pm 0.014$$

$$R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})} = 0.002 \pm 0.006 \pm 0.014$$

$$R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = 0.093 \pm 0.086 \pm 0.014.$$

LHCb 0.232±0.014±0.013

$$R_{\sigma}^{\pm} = \frac{\sigma(pp \to B_{s1}X) \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(pp \to B_{s2}^{*}X) \mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.233 \pm 0.019 \pm 0.018,$$

Results are in agreement with existing measurements of LHCb and CDF

CMS 2018: CMS-BPH-16-003, arXiv:1809.03578 LHCb 2013: doi:10.1103/PhysRevLett.110.151803 CDF 2014: doi:10.1103/PhysRevD.90.012013

Results

$$\Delta M_{\rm B_{s2}^*}^{\pm} = M(\rm B_{s2}^*) - M_{\rm B^+}^{\rm PDG} - M_{\rm K^-}^{\rm PDG} = 66.87 \pm 0.09 \pm 0.07 \, {\rm MeV},$$

$$\Delta M_{\rm B_{s2}^*}^0 = M(\rm B_{s2}^*) - M_{\rm B^0}^{\rm PDG} - M_{\rm K_S^0}^{\rm PDG} = 62.37 \pm 0.48 \pm 0.07 \, {\rm MeV},$$

$$\Delta M_{\rm B_{s1}}^{\pm} = M(\rm B_{s1}) - M_{\rm B^{*+}}^{\rm PDG} - M_{\rm K^-}^{\rm PDG} = 10.45 \pm 0.09 \pm 0.06 \, {\rm MeV},$$

$$\Delta M_{\rm B_{s1}}^0 = M(\rm B_{s1}) - M_{\rm B^{*0}}^{\rm PDG} - M_{\rm K_S^0}^{\rm PDG} = 5.61 \pm 0.23 \pm 0.06 \, {\rm MeV}.$$

$$\Gamma_{\rm B_{s2}^*} = 1.52 \pm 0.34 \pm 0.30 \, {\rm MeV}$$

Comparison to previous measurements

	$M(B_{s2}^*)-M(B^+)-M(K^-)$	$M(B_{s1})-M(B^{*+})-M(K^{-})$	$\Gamma(\mathbf{B}_{s2}^*)$
LHCb	67.06±0.12	10.46±0.06	1.56±0.49
CDF	67.73±0.19	10.35±0.19	1.4±0.44
CMS	66.87±0.12	10.45±0.11	1.52±0.43

 2^{nd} and 3^{rd} column are consistent with existing measurements of LHCb and CDF Measurement of M(B*_{s2})-M(B+)-M(K-) agrees with LHCb, not with CDF

CMS 2018: CMS-BPH-16-003, arXiv:1809.03578

LHCb 2013: doi:10.1103/PhysRevLett.110.151803

CDF 2014: doi:10.1103/PhysRevD.90.012013

Results

We also measure the mass differences between neutral and charged $B^{(*)}$ mesons:

$$M_{\rm B^0} - M_{\rm B^+} = 0.57 \pm 0.49 \pm 0.10 \pm 0.02 \,{\rm MeV}$$

$$M_{\rm B^{*0}} - M_{\rm B^{*+}} = 0.91 \pm 0.24 \pm 0.09 \pm 0.02 \, {\rm MeV}$$

The first mass difference is known with much better precision: (0.31±0.06) MeV while there are no measurements for the second one.

We present a new method to measure these mass differences! It may become very precise with more data

Summary

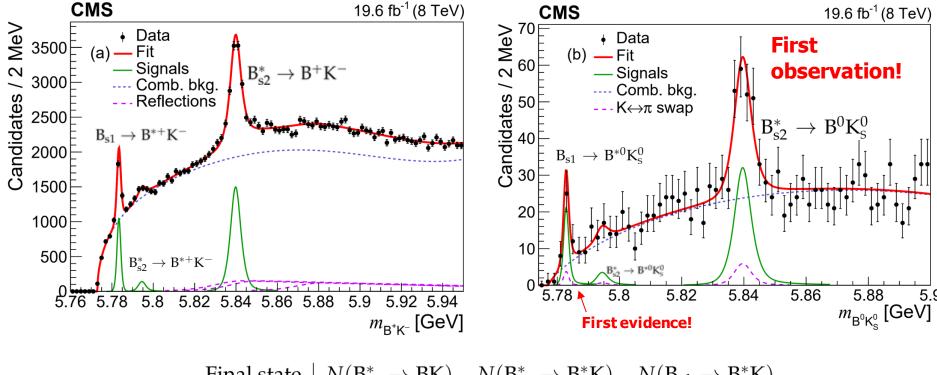
First observation (6.3 σ) of the $B_{s2}^* \rightarrow B^0 K_S^0$ decay

First evidence (3.9 σ) for the $B_{s1} \rightarrow B^{*0}K_S^0$ decay

$$\text{Measure 4 BF ratios } \frac{\mathcal{B}(B_{s2}^* \to B^0 K_s^0)}{\mathcal{B}(B_{s2}^* \to B^+ K^-)}, \frac{\mathcal{B}(B_{s1} \to B^{*0} K_s^0)}{\mathcal{B}(B_{s1} \to B^{*+} K^-)}, \frac{\mathcal{B}(B_{s2}^* \to B^{*+} K^-)}{\mathcal{B}(B_{s2}^* \to B^+ K^-)}, \frac{\mathcal{B}(B_{s2}^* \to B^{*0} K_s^0)}{\mathcal{B}(B_{s2}^* \to B^0 K_s^0)}$$

$$\mbox{Measure 2 BF x σ ratios } \ \, \frac{\sigma(pp \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*+}K^-)}{\sigma(pp \to B_{s2}^* \dots) \times \mathcal{B}(B_{s2}^* \to B^+K^-)}, \frac{\sigma(pp \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*0}K_s^0)}{\sigma(pp \to B_{s2}^* \dots) \times \mathcal{B}(B_{s2}^* \to B^0K_s^0)}$$

Measure 6 mass differences and the B_{s2} natural width


- $M(B_{s2}^*)-M(B^+)-M(K^-)$
- $M(B_{s1})-M(B^{*+})-M(K^{-})$
- $M(B_{s2}^*)-M(B^0)-M(K_S^0)$ (first measurement)
- $M(B_{s1})-M(B^{*0})-M(K_s^0)$ (first measurement)
- $M(B^{*+})-M(B^{+})$
- $M(B^{*0})-M(B^{0})$ (first measurement)
- $\Gamma(B_{s2}^*)$

We also report the mass measurements $M(B_{s2}^*)$ and $M(B_{s1})$ (in backup)

The results are in agreement with previous measurements, if they exist

Thank you!

Overview

Final state	$N(\mathrm{B_{s2}^*} o \mathrm{BK})$	$N(\mathrm{B}^*_{\mathrm{s}2} o \mathrm{B}^*\mathrm{K})$	$N(\mathrm{B_{s1}} o \mathrm{B^*K})$
$\mathrm{B}^{+}\mathrm{K}^{-}$	5424 ± 269	455 ± 119	1329 ± 83
$\mathrm{B}^0\mathrm{K}^0_\mathrm{s}$	128 ± 22	12 ± 11	34.5 ± 8.3

B⁺ is reconstructed in $J/\psi K^+$ channel B^0 is reconstructed in J/ψK⁺π⁻ channel

"Reflections":

From $B^{**} \rightarrow B^{(*)} + \pi^-$ in B^+K^- channel, yields fixed from the fit to $B^+\pi^-$ invariant mass; From $K \leftrightarrow \pi$ swap in $B^0K_S^0$ channel, yields fixed relative to the signal yields

CMS-BPH-16-003.

Summary of

all reported

 $R_{2*}^{\pm} = \frac{\mathcal{B}(\mathrm{B}_{\mathrm{s}2}^* \to \mathrm{B}^{*+}\mathrm{K}^-)}{\mathcal{B}(\mathrm{B}_{\mathrm{s}2}^* \to \mathrm{B}^+\mathrm{K}^-)} = 0.081 \pm 0.021 \, (\mathrm{stat}) \pm 0.015 \, (\mathrm{syst}),$ $R_{2*}^0 = \frac{\mathcal{B}(\mathrm{B_{s2}^*} \to \mathrm{B^{*0}K_s^0})}{\mathcal{B}(\mathrm{B_{s2}^*} \to \mathrm{B^0K_s^0})} = 0.093 \pm 0.086 \, (\mathrm{stat}) \pm 0.014 \, (\mathrm{syst}),$

$$R_{2*}^{0} = \frac{B(B_{s2} \to B^{0})}{B(B_{s2}^{*} \to B^{0})}$$

$$R_{\sigma}^{\pm} = \frac{\sigma(pp \to B_{s1} \dots)}{\sigma(pp \to B_{s2}^{*} \dots)}$$

$$egin{array}{ll} rac{\partial_{\mathbf{s}2}}{\partial_{\mathbf{s}2}} & \mathcal{B} & \mathbf{R}_{\mathbf{s}} \end{pmatrix} & \times \mathcal{B}(\mathbf{B}_{\mathbf{s}1}
ightarrow \mathbf{B}^{*+}) \ & o \mathbf{B}_{\mathbf{s}2}^{*} \dots) imes \mathcal{B}(\mathbf{B}_{\mathbf{s}2}^{*}
ightarrow \mathbf{B}^{+}) \end{array}$$

$$R_{\sigma}^{\pm} = \frac{\sigma(\text{pp} \to \text{B}_{\text{s1}} \dots) \times \mathcal{B}(\text{B}_{\text{s1}} \to \text{B}^{*+}\text{K}^{-})}{\sigma(\text{pp} \to \text{B}_{\text{s2}}^{*} \dots) \times \mathcal{B}(\text{B}_{\text{s2}}^{*} \to \text{B}^{+}\text{K}^{-})} = 0.233 \pm 0.019 \text{ (stat)} \pm 0.018 \text{ (syst)}$$

$$R^{0} = \frac{\sigma(\text{pp} \to \text{B}_{\text{s1}} \dots) \times \mathcal{B}(\text{B}_{\text{s1}} \to \text{B}^{*0}\text{K}_{\text{s}}^{0})}{\sigma(\text{pp} \to \text{B}_{\text{s1}} \dots) \times \mathcal{B}(\text{B}_{\text{s1}} \to \text{B}^{*0}\text{K}_{\text{s}}^{0})} = 0.266 \pm 0.079 \text{ (stat)} \pm 0.063 \text{ (syst)}$$

$$R_{\sigma}^{0} = \frac{\sigma(\text{pp} \to \text{B}_{\text{s1}} \dots) \times \mathcal{B}(\text{B}_{\text{s1}} \to \text{B}^{*0}\text{K}_{\text{s}}^{0})}{\sigma(\text{pp} \to \text{B}_{\text{s2}}^{*} \dots) \times \mathcal{B}(\text{B}_{\text{s2}}^{*} \to \text{B}^{0}\text{K}_{\text{s}}^{0})} = 0.266 \pm 0.079 \text{ (stat)} \pm 0.063 \text{ (syst)}$$

$$\Delta M_{\text{B}_{\text{s2}}^{*}}^{\pm} = M(\text{B}_{\text{s2}}^{*}) - M(\text{B}^{+}) - M(\text{K}^{-}) = 66.870 \pm 0.093 \text{ (stat)} \pm 0.073 \text{ (syst)} \text{ MeV}$$

 $R_2^{0\pm} = \frac{\mathcal{B}(B_{s2}^* \to B^0 K_s^0)}{\mathcal{B}(B_{s2}^* \to B^+ K^-)} = 0.432 \pm 0.077 \text{ (stat)} \pm 0.075 \text{ (syst)} \pm 0.021 \text{ (PDG)}$

 $R_1^{0\pm} = \frac{\mathcal{B}(\mathrm{B_{s1}} \to \mathrm{B^{*0}K_S^0})}{\mathcal{B}(\mathrm{B_{s1}} \to \mathrm{B^{*+}K^-})} = 0.492 \pm 0.122 \, (\mathrm{stat}) \pm 0.068 \, (\mathrm{syst}) \pm 0.024 \, (\mathrm{PDG})$

$$\Delta M_{\rm B_{s2}^*}^0 = M({\rm B_{s2}^*}) - M({\rm B^*}) - M({\rm K^*}) = 60.37 \pm 0.48 \, ({\rm stat}) \pm 0.07 \, ({\rm syst}) \, {\rm MeV},$$

$$\Delta M_{\rm B_{s1}^*}^0 = M({\rm B_{s1}}) - M({\rm B^*}) - M({\rm K^*}) = 62.37 \pm 0.48 \, ({\rm stat}) \pm 0.07 \, ({\rm syst}) \, {\rm MeV},$$

$$\Delta M_{\rm B_{s1}^*}^\pm = M({\rm B_{s1}}) - M({\rm B^*}) - M({\rm K^*}) = 10.452 \pm 0.089 \, ({\rm stat}) \pm 0.063 \, ({\rm syst}) \, {\rm MeV},$$

 $\Gamma(B_{s2}^*) = 1.52 \pm 0.34 \, (stat) \pm 0.30 \, (syst) \, MeV$

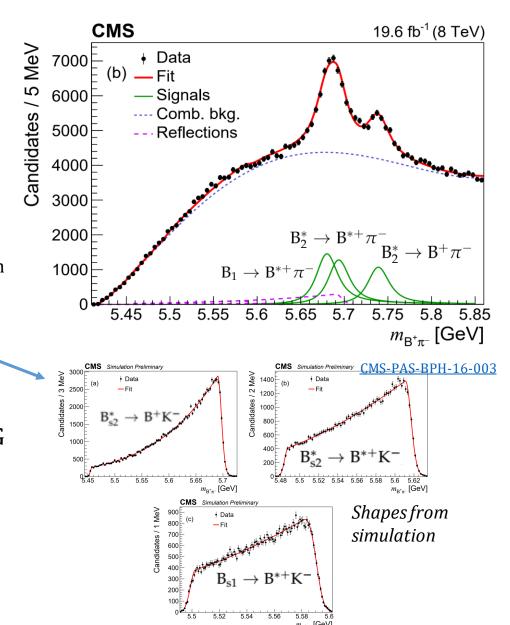
$$\Delta M_{\rm B_{s1}}^0 = M({\rm B_{s1}}) - M({\rm B^{*0}}) - M({\rm K_s^0}) = 5.61 \pm 0.23 \, ({\rm stat}) \pm 0.06 \, ({\rm syst}) \, {\rm MeV},$$
 $M({\rm B_{s2}^*}) = 5839.86 \pm 0.09 \pm 0.07 \pm 0.15 \, {\rm MeV}$

$$M({
m B}_{
m S1}) = 5828.78 \pm 0.09 \pm 0.06 \pm 0.28\,{
m MeV}$$
 $m_{{
m B}^0} - m_{{
m B}^+} = 0.57 \pm 0.49\,{
m (stat)} \pm 0.10\,{
m (syst)} \pm 0.02\,{
m (PDG)}\,{
m MeV}$

in he first
$$m_{\rm B^{*0}}-m_{\rm B^{*+}}=0.91\pm0.24~{\rm (stat)}\pm0.10~{\rm (syst)}\pm0.02~{\rm (PDG)}~{\rm MeV}$$

BACKUP

$B^+\pi^-$ invariant mass distribution


To obtain yields of these reflections, we fit $B^+\pi^-$ invariant mass distribution:

3 D-wave RBW functions convolved with resolutions (from MC)

- + $(x-x_0)^a \cdot Pol_m(x)$ for background, x_0 is threshold value, $Pol_m(x)$ is polynomial of degree m
- + (small) contributions from $B_{s_{1,2}}^{(*)}$

In the baseline fit, masses and natural widths of excited B⁰ states are fixed to PDG

The fit returns yields of about 8500, 10500 and 12000 events for the $B_2^*{\to} B^+\pi^-$, $B_2^*{\to} B^{*+}\pi^-$, and $B_1^*{\to} B^+\pi^-$ decays, respectively

Data and event selection

2012 dataset (19.6 fb⁻¹), trigger optimized to select B \rightarrow J/ ψ ... decays Muons matched to trigger; p_T(μ^{\pm}) > 3.5 GeV/c, $|\eta(\mu^{\pm})|$ < 2.2 Standard CMS "high purity" tracks, p_T > 1 GeV

$$P_{vtx}(B) > 1\%$$

PV is chosen as the one with best pointing angle

$$L_{xy}/\sigma_{Lxy}(B) > 5.0$$

 $\cos \alpha_{xy}$ >0.99 (B momentum points to PV in xy plane)

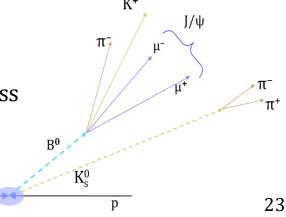
B mass in $\sim \pm 2\sigma_{eff}$ from PDG

B⁺**K**⁻ **channel**: K⁻ is chosen from PV track collection

PV

B⁰**K**⁰_S channel:

Common selection for $B^{ au}$ and B^0


 $M(K^{+}\pi^{-})$ in ±90 MeV from $K^{*}(892)$ mass,

 $M(K^+,K^-) > 1.035$ GeV to cut out $B_s^0 \rightarrow J/\psi \phi$

 K/π mass assignment: chose the candidate closer to $K^*(892)$ mass

K_S⁰ is build from displaced 2-prong vertices

 $\cos \alpha_{xy}$ >0.999 (K_S⁰ momentum points to PV in xy plane)

K+

B+K⁻ signal extraction logic

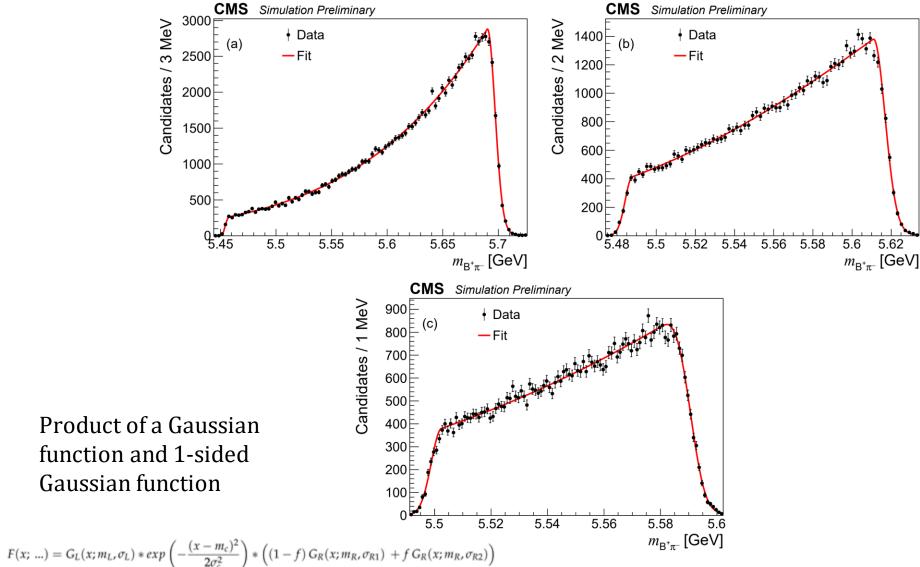
Fit to $B^{*0} \rightarrow B^{+}\pi^{-}MC$ samples to obtain signal resolutions

Fit to $B_{sl,2}^{(*)} \rightarrow B^+K^-MC$ samples to obtain reflection shapes (if reconstructed as $B^+\pi^-$)

Fit to $B^{*0} \rightarrow B^{+}\pi^{-}MC$ samples to obtain reflection shapes (if reconstructed as $B^{+}K^{-}$)

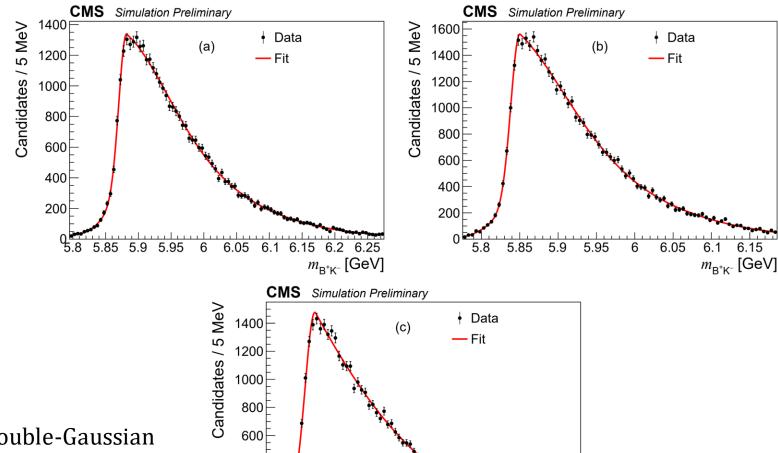
Fit to $B_{sl,2}^{(*)} \rightarrow B^+K^-MC$ samples to obtain signal resolutions

Fit to $B^+\pi^-$ invariant mass distribution in data, with signal resolutions from MC and fixed shapes of reflections from $B_{sl,2}^{(*)} \rightarrow B^+K^-$


Yields of $B^{*0} \rightarrow B^{+}\pi^{-}$ contributions

Fit to B+K- distribution in data, with

- reflections from B*0 shapes and yields fixed
- Signal resolutions fixed to MC


Signal yields, mass differences, Γ

The shapes of reflections from $B_{s1,2}^0$ decays in $B^+\pi^-$ invariant mass

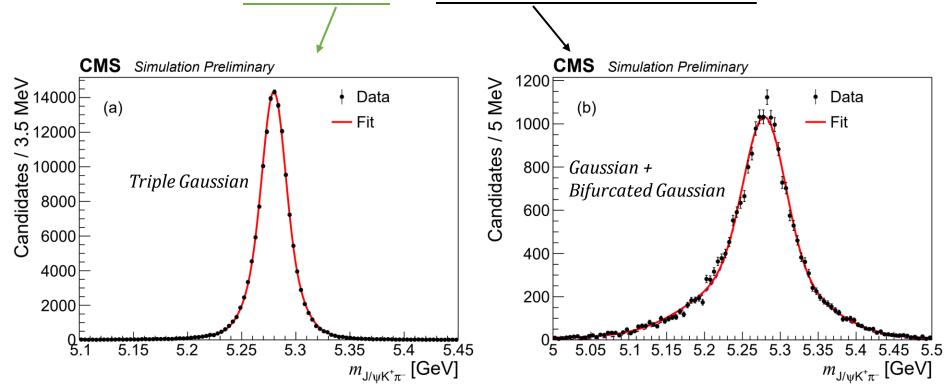
$$F(x; ...) = G_L(x; m_L, \sigma_L) * exp\left(-\frac{(x - m_c)^2}{2\sigma_c^2}\right) * \left((1 - f) G_R(x; m_R, \sigma_{R1}) + \frac{1}{2} G_R(x; m_R, \sigma_{R1})\right)$$
where $G_L(x; m, \sigma) = \begin{cases} exp(-\frac{1}{2}(\frac{x - m}{\sigma})^{\lambda_L}) & \text{if } x \leq m \\ 1 & \text{if } x \geq m \end{cases}$
and $G_R(x; m, \sigma) = \begin{cases} 1 & \text{if } x \leq m \\ exp(-\frac{1}{2}(\frac{x - m}{\sigma})^{\lambda_R}) & \text{if } x \geq m \end{cases}$

The shapes of reflections from B^{0*} decays in B⁺K⁻ invariant mass

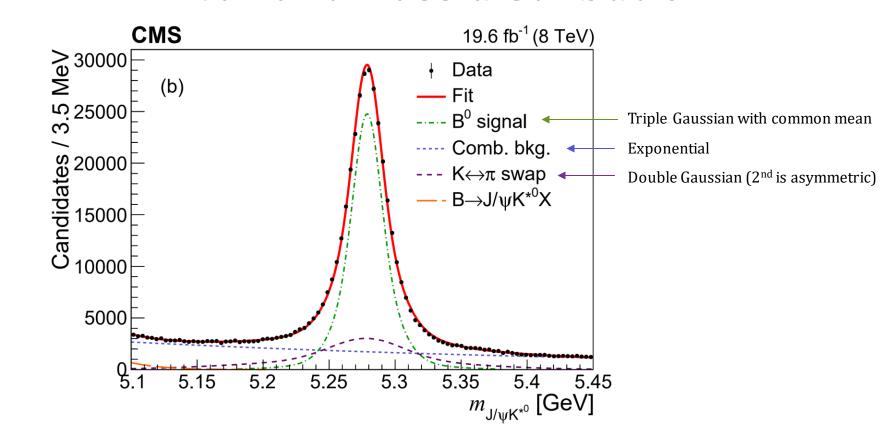
Product of a double-Gaussian function and double 1-sided Gaussian function

$$F(x; \sigma_{01}, \sigma_{02}, m_0, \sigma_1, m_1, \sigma_2, m_2, f, \phi) = G(x; ...) * \left(exp(-\frac{(x - m_1)^2}{2\sigma_1^2}) + f * exp(-\frac{(x - m_2)^2}{2\sigma_2^2} \right)$$
where $G(x; \sigma_{01}, \sigma_{02}, \phi, m_0) = \begin{cases} (1 - \phi) exp(-\frac{(x - m_0)^2}{2\sigma_{01}^2}) + \phi exp(-\frac{(x - m_0)^2}{2\sigma_{02}^2}) & \text{if } x < m_0 \\ 1 & \text{if } x > m_0 \end{cases}$

B⁰ invariant mass distribution (MC)


 B^0 is reconstructed in the decay to $J/\psi K^+\pi^-$, where kaon and pion can be misidentified (swapped) in the reconstruction. The selection requirements are

 $M(K^{\dagger}\pi^{-})$ in ±90 MeV from $K^{*}(892)$ mass,


 $M(K^+,K^-) > 1.035$ GeV to cut out $B_s^0 \rightarrow J/\psi \varphi$, as in P5' analysis

 K/π mass assignment: as in P5', chose the candidate closer to $K^*(892)$ mass

We use MC to obtain the signal resolution and shape of $K \leftrightarrow \pi$ swapped component:

B⁰ invariant mass distribution

The resolution parameters and the shape of $K \leftrightarrow \pi$ swapped component are fixed from simulation (see backup)

The B⁰ signal region [5245, 5313] MeV includes \sim 220000 signal candidates and \sim 41000 $K \leftrightarrow \pi$ swap candidates \Rightarrow "fraction of swapped component w.r.t. signal" = (18.9±0.3)%

Vary the signal resolution by + and – 3% (see B⁺ fit) \Rightarrow variation of this fraction is (18.9±3.0)% (uncertainty will be considered as systematics source) CMS-PAS-BPH-16-003

Systematic uncertainties in the branching fraction ratios

Systematic uncertainty in %

$R_2^{0\pm} =$	$\mathcal{B}(\mathrm{B}^*_{\mathrm{s}2} o \mathrm{B}^0\mathrm{K}^0_{\mathrm{s}})$
κ_2 —	$\overline{{\cal B}({ m B}_{ m s2}^* o{ m B}^+{ m K}^-)}$

$$R_1^{0\pm} = rac{{\cal B}({
m B}_{
m s1}
ightarrow {
m B}^{*0} {
m K}_{
m s}^0)}{{\cal B}({
m B}_{
m s1}
ightarrow {
m B}^{*+} {
m K}^-)}$$

	anoor tann	-5 /0
Source	$R_2^{0\pm}$	$R_1^{0\pm}$
Track reconstruction efficiency	7.8	7.8
$m_{ m B^+\pi^-}$ distribution model	2.5	2.0
$m_{ m B^+K^-}$ distribution model	2.4	4.6
$m_{ m B^0K_S^0}$ distribution model	14	8.1
Mass resolution	0.7	2.2
Fraction of KPS	2.6	2.6
Non-K*0 contribution	5.0	5.0
Finite size of simulated samples	1.2	1.2
Total	18	14

Systematic uncertainty in %

$R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^* \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^* \to B^{+}K^{-})} R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^* \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^* \to B^{0}K_{s}^{0})}$
$R_{\sigma}^{\pm} = \frac{\sigma(pp \to B_{s1}\dots) \times \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(pp \to B_{s2}^{*}\dots) \times \mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})}$
$R_{\sigma}^{0} = \frac{\sigma(pp \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\sigma(pp \to B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}$

	bystem	atic unct	i tuility i	11 /0
Source	R^\pm_{2*}	R_{2*}^{0}	R_σ^\pm	R_{σ}^{0}
$m_{\mathrm{B}^{+}\pi^{-}}$ distribution model	2.9		2.7	
$m_{ m B^+K^-}$ distribution model	17		7.1	_
$m_{ m B^0K_S^0}$ distribution model		13		24
Mass resolution	1.2	3.0	1.5	1.1
Uncertainties in $M_{B^*}^{PDG} - M_{B}^{PDG}$	7.7	4.8	_	_
Finite size of simulated samples	1.1	1.3	1.1	1.3
Total	19	15	7.8	24

Systematic uncertainties

Four mass differences obtained from the fits

$$\Delta M_{\rm B_{s2}^*}^{\pm} = M(\rm B_{s2}^*) - M_{\rm B^+}^{\rm PDG} - M_{\rm K^-}^{\rm PDG}, \qquad \Delta M_{\rm B_{s1}}^{\pm} = M(\rm B_{s1}) - M_{\rm B^{*+}}^{\rm PDG} - M_{\rm K^-}^{\rm PDG}$$

$$\Delta M_{\rm B_{s2}^*}^0 = M(\rm B_{s2}^*) - M_{\rm B^0}^{\rm PDG} - M_{\rm K_s^0}^{\rm PDG}, \qquad \Delta M_{\rm B_{s1}}^0 = M(\rm B_{s1}) - M_{\rm B^{*0}}^{\rm PDG} - M_{\rm K_s^0}^{\rm PDG}$$

allow to measure the mass differences between neutral and charged B^(*) mesons:

$$M_{\mathrm{B}^{0}} - M_{\mathrm{B}^{+}} = \Delta M_{\mathrm{B}_{\mathrm{s}2}^{\pm}}^{\pm} - \Delta M_{\mathrm{B}_{\mathrm{s}2}^{\ast}}^{0} + M_{\mathrm{K}^{-}}^{\mathrm{PDG}} - M_{\mathrm{K}_{\mathrm{S}}^{0}}^{\mathrm{PDG}}$$
 $M_{\mathrm{B}^{*0}} - M_{\mathrm{B}^{*+}} = \Delta M_{\mathrm{B}_{\mathrm{s}1}}^{\pm} - \Delta M_{\mathrm{B}_{\mathrm{s}1}}^{0} + M_{\mathrm{K}^{-}}^{\mathrm{PDG}} - M_{\mathrm{K}_{\mathrm{S}}^{0}}^{\mathrm{PDG}}$

Additional systematic uncertainties are related to

- > Shift from reconstruction: values obtained from the reconstructed MC differ a bit from those in the generation configuration. Our measurements are corrected by these shifts, and value of each shift is used as systematic uncertainty.
- > Detector misalignment: 18 additional MC samples for each measurement are produced with differently distorted detector geometry, and maximum deviation from the case of no misalignment is taken as systematic uncertainty.

Source	$\Delta M_{ m B_{s2}^*}^{\pm}$	$\Delta M_{\rm B_{\rm s1}}^{\pm}$	$\Delta M_{ m B_{s2}^*}^0$	$\Delta M_{\rm B_{\rm s1}}^0$	$M_{\mathrm{B}^0}-M_{\mathrm{B}^+}$	$M_{\rm B^{*0}}-M_{\rm B^{*+}}$	$\Gamma_{B_{s2}^{\ast}}$
$\overline{m_{\mathrm{B}^{+}\pi^{-}}}$ distribution model	0.024	0.008		_	0.024	0.008	0.11
$m_{ m B^+K^-}$ distribution model	0.011	0.043	_		0.011	0.043	0.11
$m_{ m B^0 K_c^0}$ distribution model	<u> </u>		0.039	0.038	0.039	0.038	
Uncertainties in $M_{B^*}^{PDG} - M_{B}^{PDG}$	0.012	0.003	0.003	0.0001	0.012	0.003	0.03
Shift from reconstruction	0.056	0.044	0.050	0.042	0.075	0.061	
Detector misalignment	0.036	0.005	0.031	0.006	0.038	0.008	0.15
Mass resolution	0.007	0.005	0.005	0.005	0.009	0.007	0.20
Total	0.073	0.063	0.071	0.057	0.098	0.085	0.30

B⁰K⁰_S signal significance

Estimated using likelihood ratio of fits with and without signal component

```
P = TMath.Prob(Log L_S – Log L_0, 1)
Signif = \sqrt{2} · Tmath.ErfcInverse(P)
```

where

 L_0 corresponds to fit with signal L_S corresponds to fit without signal

For these fits, systematic uncertainties of resolution and fraction of swapped component are included as Gaussian constraints in likelihood; Mass and Γ uncertainties from PDG are as well Gaussian-constrained

Obtained significance is:

6.3 σ for the B_{s2}^{*}→B⁰K_S⁰ decay

3.9 σ for the B_{s1}→B*0K $_{\rm S}^{\rm 0}$ decay

They vary in $[6.3, 7.0]\sigma$ and $[3.6, 3.9]\sigma$ with variations of fit range and bkg model

Measured BF ratios

CMS-BPH-16-003, arXiv:1809.03578

$$\begin{split} R_{2}^{0\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{0}K_{s}^{0})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{\epsilon(B_{s2}^{*} \to B^{+}K^{-})}{\epsilon(B_{s2}^{*} \to B^{0}K_{s}^{0})} \times \\ & \times \frac{\mathcal{B}(B^{+} \to J/\psi K^{+})}{\mathcal{B}(B^{0} \to J/\psi K^{*0}) \mathcal{B}(K^{*0} \to K^{+}\pi^{-}) \mathcal{B}(K_{s}^{0} \to \pi^{+}\pi^{-})} \\ R_{1}^{0\pm} &= \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})} = \frac{N(B_{s1} \to B^{*0}K_{s}^{0})}{N(B_{s1} \to B^{*+}K^{-})} \times \frac{\epsilon(B_{s1} \to B^{*+}K^{-})}{\epsilon(B_{s1} \to B^{*0}K_{s}^{0})} \times \\ & \times \frac{\mathcal{B}(B^{+} \to J/\psi K^{+})}{\mathcal{B}(B^{0} \to J/\psi K^{*0}) \mathcal{B}(K^{*0} \to K^{+}\pi^{-}) \mathcal{B}(K_{s}^{0} \to \pi^{+}\pi^{-})}, \end{split}$$

$$R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^* \to B^{*+}K^-)}{\mathcal{B}(B_{s2}^* \to B^+K^-)} = \frac{N(B_{s2}^* \to B^{*+}K^-)}{N(B_{s2}^* \to B^+K^-)} \times \frac{\epsilon(B_{s2}^* \to B^+K^-)}{\epsilon(B_{s2}^* \to B^{*+}K^-)},$$

$$R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = \frac{N(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{N(B_{s2}^{*} \to B^{0}K_{s}^{0})} \times \frac{\epsilon(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\epsilon(B_{s2}^{*} \to B^{*0}K_{s}^{0})},$$

$$R_{\sigma}^{\pm} = \frac{\sigma(pp \rightarrow B_{s1}\dots) \times \mathcal{B}(B_{s1} \rightarrow B^{*+}K^{-})}{\sigma(pp \rightarrow B_{s2}^{*}\dots) \times \mathcal{B}(B_{s2}^{*} \rightarrow B^{+}K^{-})} = \frac{N(B_{s1} \rightarrow B^{*+}K^{-})}{N(B_{s2}^{*} \rightarrow B^{+}K^{-})} \times \frac{\epsilon(B_{s2}^{*} \rightarrow B^{+}K^{-})}{\epsilon(B_{s1} \rightarrow B^{*+}K^{-})},$$

$$R_{\sigma}^{0} = \frac{\sigma(pp \to B_{s1}...) \times \mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\sigma(pp \to B_{s2}^{*}...) \times \mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = \frac{N(B_{s1} \to B^{*0}K_{s}^{0})}{N(B_{s2}^{*} \to B^{0}K_{s}^{0})} \times \frac{\epsilon(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\epsilon(B_{s1} \to B^{*0}K_{s}^{0})},$$

Relative efficiencies

$$\frac{\epsilon(B_{s2}^* \to B^+ K^-)}{\epsilon(B_{s2}^* \to B^0 K_s^0)} = 15.77 \pm 0.18, \quad \frac{\epsilon(B_{s1} \to B^{*+} K^-)}{\epsilon(B_{s1} \to B^{*0} K_s^0)} = 16.33 \pm 0.20,$$

$$\frac{\epsilon(B_{s2}^* \to B^+ K^-)}{\epsilon(B_{s2}^* \to B^{*+} K^-)} = 0.961 \pm 0.010, \quad \frac{\epsilon(B_{s2}^* \to B^0 K_s^0)}{\epsilon(B_{s2}^* \to B^{*0} K_s^0)} = 0.970 \pm 0.012,$$

$$\frac{\epsilon(B_{s2}^* \to B^+ K^-)}{\epsilon(B_{s1} \to B^{*+} K^-)} = 0.953 \pm 0.010, \quad \frac{\epsilon(B_{s2}^* \to B^0 K_s^0)}{\epsilon(B_{s1} \to B^{*0} K_s^0)} = 0.987 \pm 0.012,$$

Their uncertainties are used as systematic uncertainties