Searches for electroweak production of higgsino with ATLAS

Kazuki Todome, on Behalf of ATLAS collaboration

INFN Bologna

IV international conference on particle physics and astrophysics 22-26 October 2018

Introduction

Electroweakinos

Higgsino, Bino and Wino are mixed and form electroweakinos

- 4 neutralinos $\tilde{\chi}_{i=1,2,3,4}^0$ and 2 charginos $\tilde{\chi}_{i=1,2}^{\pm}$
- "Naturalness" criterion suggests that the Higgsino mass parameter (μ) is near the weak scale (arxiv:1110.6926) ■ Naturalness in MSSM (tree level): $-\frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2$

I In naturalness scenario, $\tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are dominated by Higgsino

□ Those lightest electroweakinos are separated by O(0.1) - O(10) GeV

Higgsino search is well motivated, but it is challenging

- Low production cross section
- Soft decay products (next page)

Overview of Higgsino search

Depending on $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$, different signal characteristics are expected

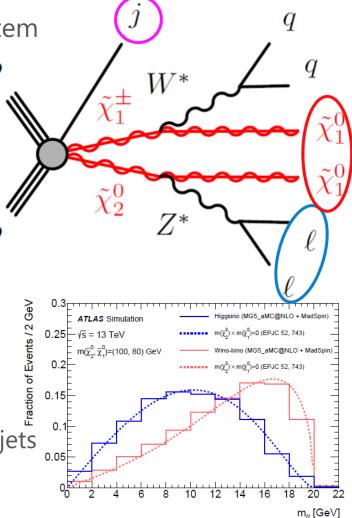
□ $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \approx$ few GeV: **Soft lepton** <u>arxiv:1712.08119</u> □ NLSPs decay via off shell W/Z □ Due to small mass gap, very soft leptons are expected

□ $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \approx$ few hundred MeV: **disappearing track** $\frac{\text{ATL-PHYS-PUB-2017-01}}{\frac{arxiv:1712.02118}{2}}$ j □ $\tilde{\chi}_1^{\pm}$ decay via soft π[±] with long lifetime j □ Non-standard "disappearing" chargino track is expected p

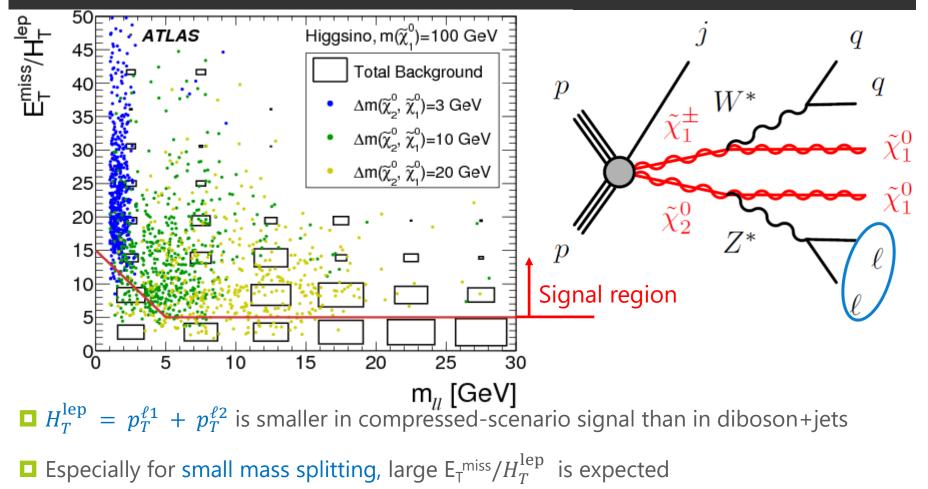
Higgsino search with assuming GGM was also performed (arxiv: 1806.04030, arxiv: 1804.03602)

 \square All results are with 36.1 fb⁻¹ data collected in 2015+2016^p

Soft lepton

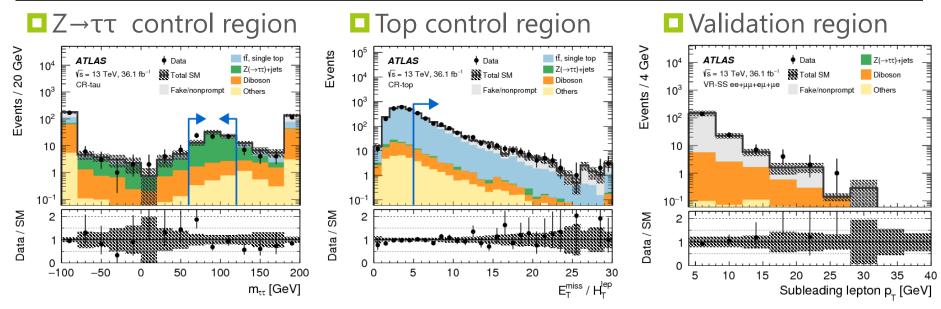

Soft lepton: Overview

■ High p_T (> 100 GeV) ISR jet boosts $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ system ■ E_T^{miss} is enhanced and used as trigger p(>200 GeV is requested)

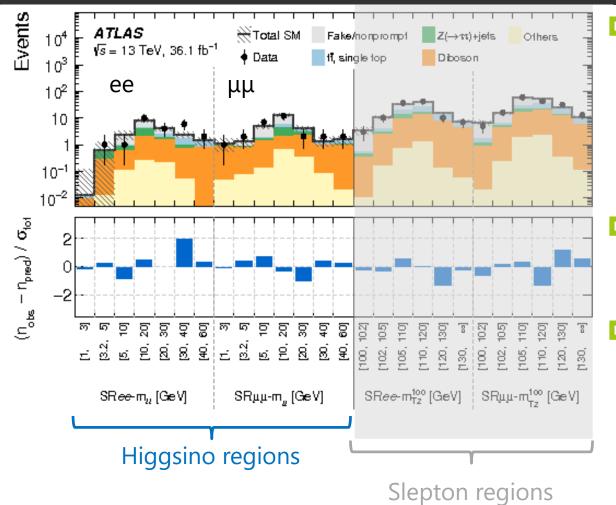

$$\begin{split} & \mathbf{\tilde{\chi}}_{2}^{0} \to \tilde{\chi}_{1}^{0} Z^{*} \to \tilde{\chi}_{1}^{0} \ell \ell \text{ is essential} \\ & \mathbf{D}_{\ell \ell} \text{ has kinematic endpoint at } \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) \\ & \mathbf{D}_{\ell \ell} \text{ is used as a final discriminant} \end{split}$$

Final state:

- Same flavor exactly two leptons
- At least one jet
- Large E_T^{miss}
- Backgrounds:
 - □ Irreducible: Diboson+jets, tt, tW, and $Z \rightarrow \tau \tau$ + jets
 - Reducible: Fake/non-prompt leptons



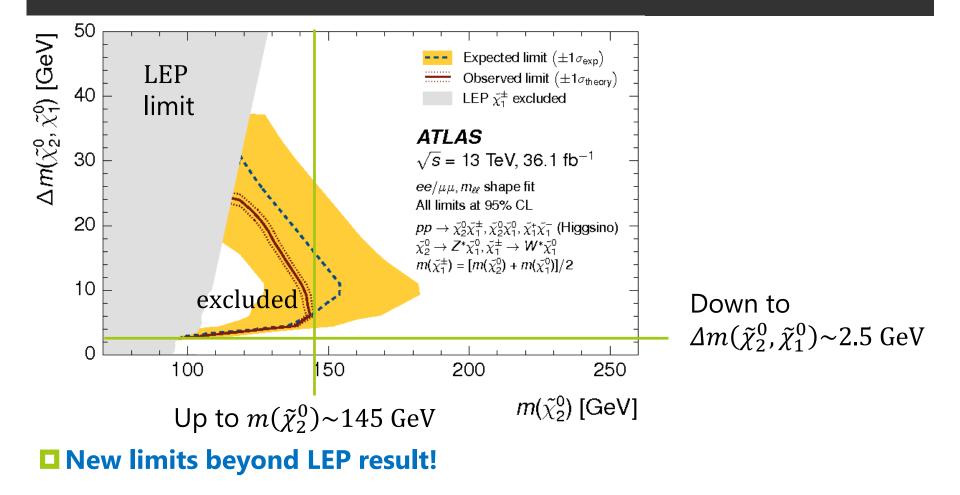
Soft lepton: Suppress diboson



□ Tight requirement is applied for smaller mass splitting

Soft lepton: Other backgrounds

- $\Box Z \rightarrow \tau \tau$ + jets, tt and tW
 - \blacksquare $m_{\tau\tau}$ selection and b-jet veto
 - MC normalized using data in control regions
- Fake/non-prompt leptons
 - estimated using data-driven Fake Factor method
 - Validated using data in same-sign dilepton region



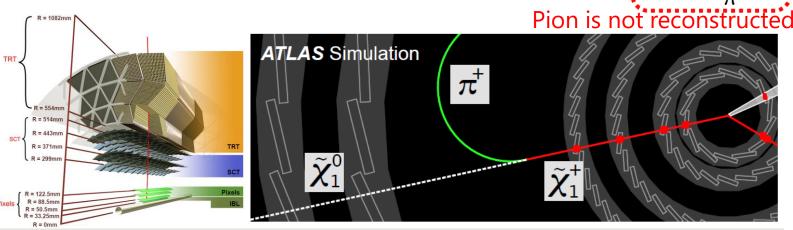
 $m_{\ell\ell}$ distribution of observed data are compared with SM expectation

No significant excess

Based on m_{ell} shape, some signal mass are excluded (next page)

Soft lepton: Interpretation

Disappearing track


Disappearing track: Overview

□ In compressed scenario, $\tilde{\chi}_1^{\pm}$ has long lifetime

$$c\tau[\text{mm}] \sim 7 \times \left[\left(\frac{\Delta m \left(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1,2}^{0} \right)}{340 \,\text{MeV}} \right)^{3} \sqrt{1 - \frac{m_{\pi}^{2}}{\Delta m \left(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1,2}^{0} \right)^{2}}} \right]^{-1}$$

Expected cτ range: 8 mm to 20 mm

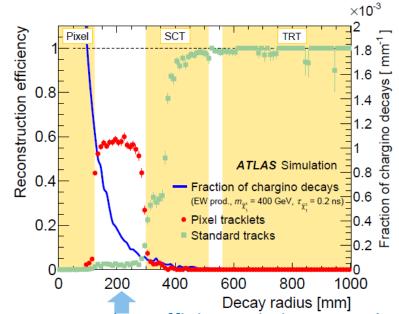
- □ Pion from $\tilde{\chi}_1^{\pm}$ decay has too low momentum to reconstruct track
 - Therefore, track is "disappearing"

p

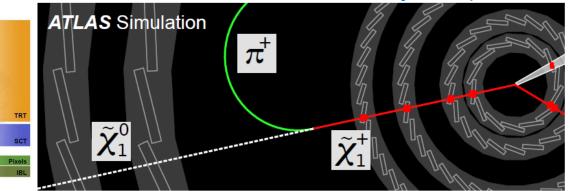
Disappearing track: Track reconstruction

Inner Detector consists of:

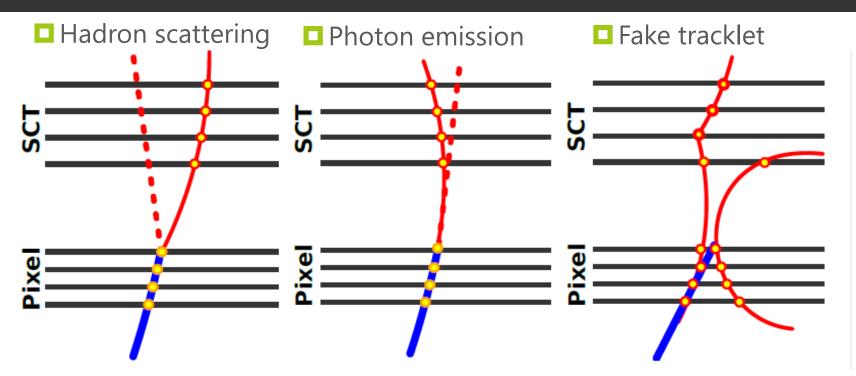
■ Pixels: $r = [30, 120] \text{ mm} \leftarrow \text{installed IBL!}$


- **SCT**: r = [300,520] mm
- **TRT:** r = [560,1080] mm

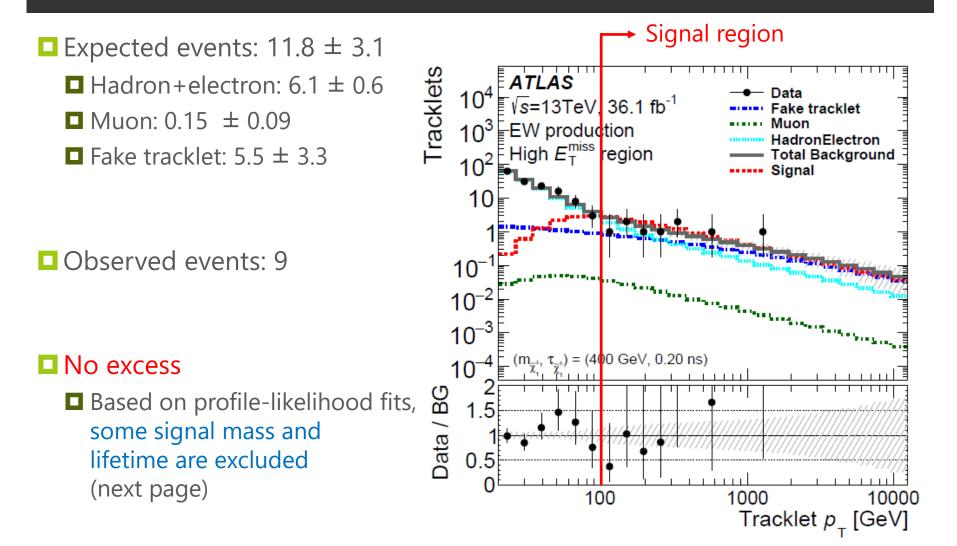
TRT

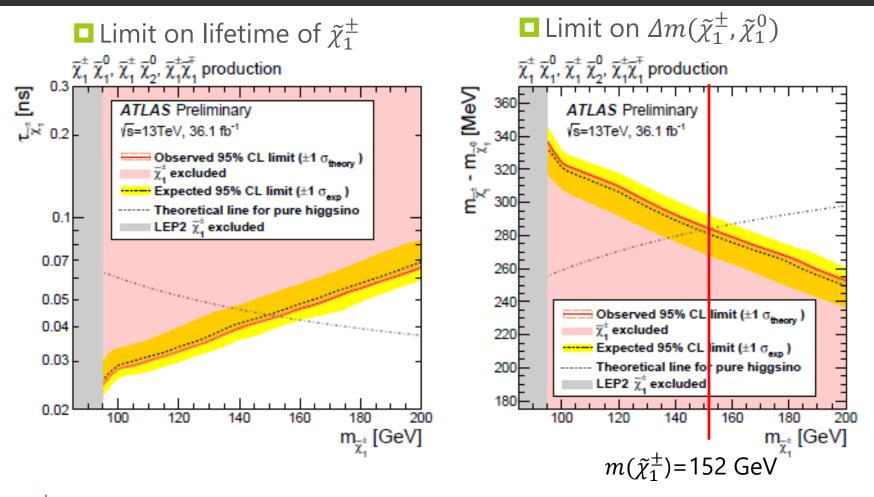

P = 371

$\square \tilde{\chi}_1^{\pm}$ may decay between Pixels and SCT


After standard track reconstruction, hits not associated to standard track are used for "tracklet" reconstruction

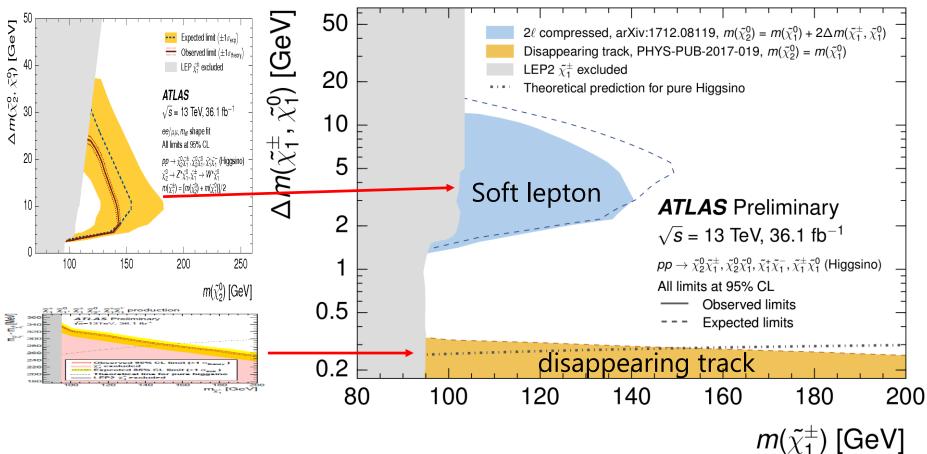
Reconstruction efficiency is improved


Disappearing track: Background


Suppression: isolation, impact parameter of tracklet requirement

Estimation: templates for background components are estimated from data
 Templates are fitted to control samples

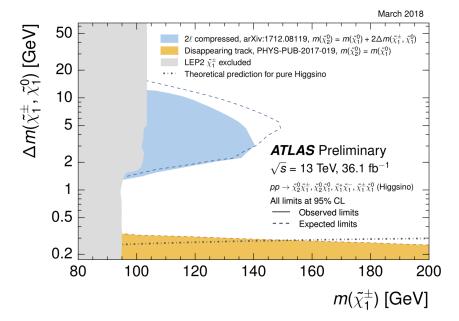
Disappearing track: Results


Disappearing track: Interpretation

 $\Box \tilde{\chi}_1^{\pm}$ mass up to 152 GeV are excluded for pure higgsino model

Combined result

March 2018


Soft lepton search and disappearing track search are complementary

Summary

Higgsino search is motivated by "naturalness"

- Depending on $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ scenario, two types of search were performed With 36.1 fb⁻¹ data collected in 2015+2016
 - $\square \Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \approx \text{few GeV: Soft lepton}$
 - $\square \Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \approx$ few hundred MeV: **disappearing track**

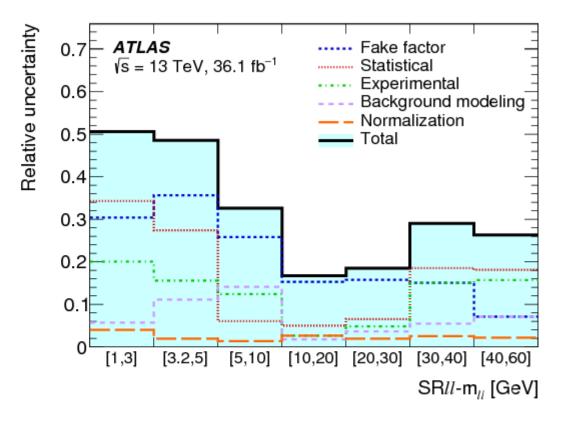
backup

Soft lepton: Assumptions

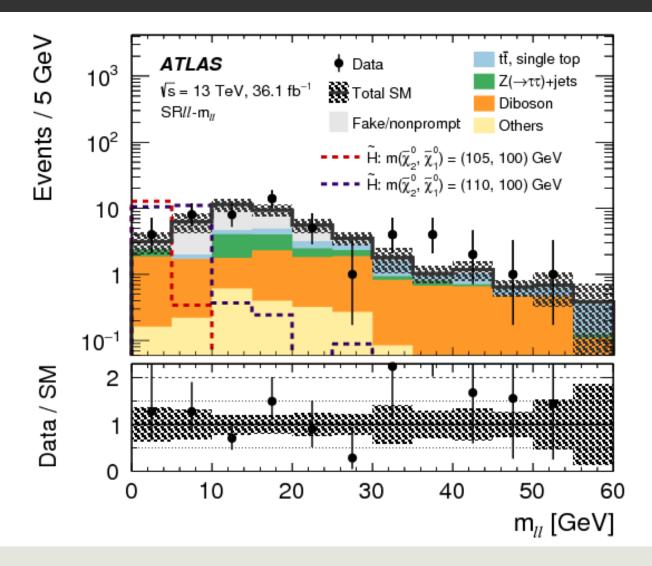
- Cross-section calculation:
 - Assuming pure Higgsino
- Mass splitting:
 m(\$\tilde{\chi}_1^+\$)=1/2[m(\$\tilde{\chi}_1^0\$)+m(\$\tilde{\chi}_2^0\$)]
 O(100) MeV splittings are generated by radiative correction
 >O(100) MeV splittings are requiring mixing with Wino or Bino

Branching ratio

$$\square BR(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z^*) = BR(\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 W^*) = 100\%$$

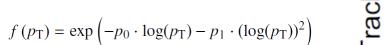

Soft lepton: Signal region

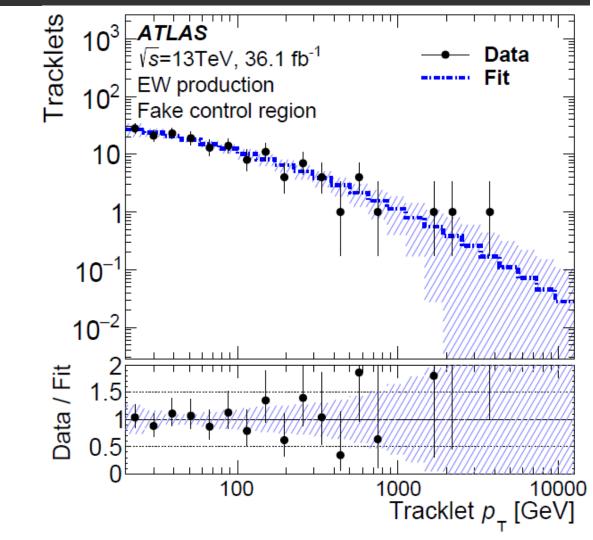
Variable	Common requirement		
Number of leptons	= 2		
Lepton charge and flavor	e^+e^- or $\mu^+\mu^-$		
Leading lepton $p_{\rm T}^{\ell_1}$	> 5 (5) GeV for electron (muon)		
Subleading lepton $p_{\rm T}^{\ell_2}$	> 4.5 (4) GeV for electron (muon)		
$\Delta R_{\ell\ell}$	> 0.05		
$m_{\ell\ell} E_{\mathrm{T}}^{\mathrm{miss}}$	\in [1, 60] GeV excluding [3.0, 3.2] GeV \leftarrow suppress J/ ψ , Z > 200 GeV		
Number of jets	≥ 1		
Leading jet $p_{\rm T}$	> 100 GeV		
$\Delta \phi(j_1, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	> 2.0		
$\min(\Delta \phi(any jet, \mathbf{p}_T^{miss}))$	> 0.4		
Number of <i>b</i> -tagged jets	= 0		
$m_{ au au}$	< 0 or > 160 GeV		
	Electroweakino SRs	Slepton SRs	
$\Delta R_{\ell\ell}$	< 2	_	
$m_{ m T}^{\ell_1}$	< 70 GeV	_	
$E_{\rm T}^{\rm miss}/H_{\rm T}^{\rm lep}$	$> \max\left(5, 15 - 2\frac{m_{\ell\ell}}{1 \text{ GeV}}\right)$	$> \max\left(3, 15 - 2\left(\frac{m_{T2}^{100}}{1 \text{ GeV}} - 100\right)\right)$	
Binned in	$m_{\ell\ell}$	$m_{\rm T2}^{100}$	


Soft lepton: CR and VR

Region	Leptons	$E_{\rm T}^{\rm miss}/H_{\rm T}^{\rm lep}$	Additional requirements
CR-top CR-tau	$\begin{array}{c} e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp} \\ e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp} \end{array}$	> 5 € [4, 8]	$\geq 1 b$ -tagged jet(s) $m_{\tau\tau} \in [60, 120] \text{ GeV}$
VR-VV VR-SS VRDF- $m_{\ell\ell}$ VRDF- m_{T2}^{100}	$\begin{array}{l} e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp} \\ e^{\pm}e^{\pm}, \mu^{\pm}\mu^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}e^{\pm} \\ e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp} \\ e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp} \end{array}$	< 3 > 5 > max $(5, 15 - 2\frac{m_{\ell\ell}}{1 \text{ GeV}})$ > max $(3, 15 - 2\left(\frac{m_{T2}^{100}}{1 \text{ GeV}} - 100\right))$	$\Delta R_{\ell\ell} < 2, m_{\mathrm{T}}^{\ell_1} < 70 \mathrm{GeV}$
$\begin{bmatrix} ATLAS \\ VS = 13 \text{ TeV}, \\ 10^3 \\ 10^2 \\ 10^{-1} \\ 10^{-1} \\ 0 \\ -100 \\ -50 \end{bmatrix}$	36.1 fb^{-1} $Total SM$ $Fake/nonprompt$ $C(-\tau)+jets$ $Diboson$ $C(thers)$ $C(-\tau)$ $C(-$	standard relation of the standard relation of	$m_{\tau\tau} = \text{sign} (m_{\tau\tau}^2) \sqrt{ m_{\tau\tau}^2 },$ $m_{\tau\tau}^2 \equiv 2p_{\ell_1} \cdot p_{\ell_2}(1+\xi_1)(1+\xi_2)$ $\mathbf{p}_{T}^{\text{miss}} = \xi_1 \mathbf{p}_{T}^{\ell_1} + \xi_2 \mathbf{p}_{T}^{\ell_2}$ 30

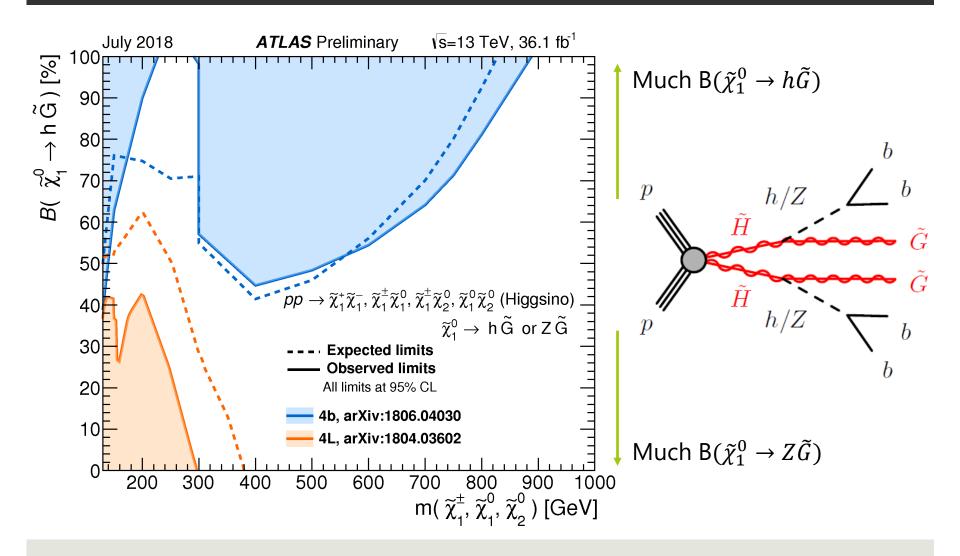
Soft lepton: Systematics




Soft lepton: $m_{\ell\ell}$ shape

Disappearing track: Fake tracklet template

Fit function:



Disappearing track: Systematics

Relative uncertainties [%]	Electroweak channel	Strong channel
MC statistical uncertainty	6.6	6.5
ISR/FSR	7.6	0.2
Jet energy scale and resolution	2.0	0.7
Trigger efficiency	0.2	< 0.1
Pile-up modelling	11	
Tracklet efficiency	6.9	
Luminosity	3.2	
Sub-total	17	15
Cross-section	6.4	28
Total	18	32

GGM result

