

Search for lepton flavor violating decay of muon in MEG experiments

Shinji Ogawa (The University of Tokyo)

on behalf of the MEG Collaboration

Charged lepton flavor violation

- Standard Model.
 Flavor violation can happen in quark & neutrino sector.
 Charged Lepton Flavor Violation (CLFV) prohibited.
 Beyond Standard Model.
 CLFV is predicted at a detectable branching ratio in some BSM models (SUSY-GUT, SUSY-Seesaw, etc...)
- Experimental search of $\mu \rightarrow e\gamma$
 - Expected to be Br($\mu \rightarrow e\gamma$) = 10⁻¹² 10⁻¹⁴ in BSM.
 - Best limit before MEG: 1.2 x 10⁻¹¹ @90%C.L. give by MEGA (1999)

MEG searches for $\mu \rightarrow e\gamma$ down to O(10⁻¹⁴)

Ũ0

μ

 e_R

 $\mu \rightarrow e\gamma$ search

Intense DC muon beam & good detector resolutions are the keys to search for $\mu \rightarrow e\gamma$.

MEG experiment

- MEG experiment was carried out in 2009-2013.
 - World's most intense DC beam at PSI (Switzerland).
 - Positron spectrometer
 - Gradient magnetic field + segmented low-mass drift chamber + scintillation timing counter.
 - LXe γ-ray detector
- \rightarrow MEG result with full data set:

MEG II experiment

MEG II : Upgrade of MEG experiment

- Muon beam intensity : x2 ($3x10^7 \rightarrow 7x10^7 \mu/s$)
- Detection efficiency : x2
- All detector resolutions : x1/2

"The design of the MEG II experiment", Eur. Phys. J. C (2018) 78:38 Improve sensitivity by one order of magnitude

Cylindrical drift chamber

- Tracking (momentum, emission angle, vertex reconstruction) of 53MeV e⁺
- Unique volume cylindrical drift chamber
 - Low-mass to reduce multiple scattering
 - More # of hits per track for better tracking precision
 - : ~20 (MEG) \rightarrow ~60 (MEG II)
 - Reduced material on positron track before hitting timing counter.
 - : x2 e⁺ efficiency from MEG

Pixelated timing counter

LXe γ-ray detector

- Position, energy, timing measurement of 53MeV γ.
- LXe scintillation light read out by photo-sensors.
- Eγ resolution in MEG was limited by non-uniformity of readout.
- 216 PMTs on the γ-entrance face are replaced with 4092 MPPCs.
 - Better granularity & uniformity
 - → Better position
 & energy resolution.
 - VUV-sensitive MPPC newly developed with HPK.

Current status

Current status

Current status

Prospects

Engineering run of MEG II will be done in 2019, followed by physics DAQ.

 Expected sensitivity of MEG II : 6 × 10⁻¹⁴ (3 years DAQ)

PDF parameters	MEG	MEG II
E_{e^+} (keV)	380	130
θ_{e^+} (mrad)	9.4	5.3
ϕ_{e^+} (mrad)	8.7	3.7
z_{e^+}/y_{e^+} (mm) core	2.4/1.2	1.6/0.7
$E_{\gamma}(\%) \ (w > 2 \ \text{cm})/(w < 2 \ \text{cm})$	2.4/1.7	1.1/1.0
$u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$	5/5/6	2.6/2.2/5
$t_{e^+\gamma}$ (ps)	122	84
Efficiency (%)		
Trigger	≈ 99	≈ 99
Photon	63	69
e^+ (tracking × matching)	30	70

Summary

- MEG experiment searches for $\mu \rightarrow e\gamma$.
 - Lepton flavor violating decay of muon.
 - Promising BSM search.
- MEG final result : Br($\mu \rightarrow e\gamma$) < 4.2 x 10⁻¹³ at 90% C.L.
- Preparation of MEG II is going on.
 - Completed construction of all detectors.
 - Engineering run from 2019.
 - \rightarrow Sensitivity 6x10⁻¹⁴ within 3 years DAQ, once physics run starts.

Backup

VUV-sensitive large area MPPC

MPPC for MEG II LXe detector has been developed in collaboration with Hamamatsu Photonics K.K.

VUV-sensitive (PDE (λ=175nm) > 15%)

- Scintillation light of Xe is in VUV range
- Realized by removing the protection layer of resin, optimizing optical matching b/w LXe and sensor surface, and thinning contact layer.

Large sensitive area (12 × 12 mm²)

- To keep the number of readout channels manageable.
- Discrete array of four 6 × 6 mm² chips
- Four chips connected in series at readout PCB to reduce long time constant.

Hamamatsu S10943-4372

LXe γ-ray detector

- Detector commissioning is ongoing.
 - Sensor calibration & alignment, Xe purification, etc...
- γ-ray from SM muon decay was successfully observed.

Radiative Decay Counter / Readout electronics

Radiative Decay Counter

Detect low energy e⁺, associated with BG γ.

Readout electronics

- Integrated trigger and DAQ system designed for MEG II.
- System demonstrator successfully tested.
- \rightarrow Start mass production soon.

