

#### Measurement of the $t\bar{t}H$ production

#### **Johannes Mellenthin**

#### On behalf of the ATLAS Collaboration

II. Physikalisches Institut, Georg-August-Universität Göttingen

Particle Physics I

SPONSORED BY THE

Federal Ministry of Education and Research



Moscow, October 23<sup>rd</sup>, 2018







#### **Johannes Mellenthin**

#### On behalf of the ATLAS Collaboration

II. Physikalisches Institut, Georg-August-Universität Göttingen

Particle Physics I

SPONSORED BY THE

Federal Ministry of Education and Research ICPPA-2018

Moscow, October 23<sup>rd</sup>, 2018



#### Introduction

- Observing *ttH* production is one of the milestones for LHC Run-II
- Direct sensitivity to top quark Yukawa coupling
- ATLAS (and CMS) have searched for *ttH* production since LHC Run-I
- Both experiments observed this process this year
- Presenting here an overview of the 13 TeV *t*t ATLAS analyses

### Outline

- $t\bar{t}H$  production and decay
- Run-II results
  - $\circ \quad t\bar{t}H (H \to b\bar{b})$
  - $t\bar{t}H$  (multilepton)
  - $\circ t\bar{t}H (H \to \gamma\gamma)$
  - $\circ \quad t\bar{t}H (H \to ZZ^* \to 4\ell)$



- Run-II combination of all channels
- Conclusions & Outlook

# ttH production



Johannes Mellenthin

Observation of the *ttH* production

**ICPPA-2018** 

# ttH decay

- Different event topologies depending on top and Higgs decays
- *tt*: allhad, *l*+jets, dilepton
  - All hadronic highest BR, but larger backgrounds Ο
- The main Higgs decay channels are used
  - $H \rightarrow bb, W^+W^-, ZZ^*, \tau\overline{\tau}, \gamma\gamma$
  - Analyses are split as follows 0
    - , BR vs resolution! •  $ttH(H \rightarrow bb)$  - the abundant (
    - *t*tH (multilepton) *the small*
    - $t\bar{t}H (H \rightarrow \gamma\gamma)$  the other small
    - $t\bar{t}H (H \rightarrow ZZ^* \rightarrow 4\ell)$  the tiny (only since Run-II)
- Final states:  $\geq$  2 jets,  $\geq$  2 *b*-jets, 0-6 e/ $\mu$ / $\tau$ , 0/2 $\gamma$



# ttH analyses in Run-II

# $t\bar{t}H (H \rightarrow b\bar{b})$ analysis with 2015+2016 data



- *tt*+jets very challenging background
- Create SRs & CRs enriched in *ttH*, *ttb*, *ttc*, *tt*+light quarks
  - Ο
  - Include lepton+jets boosted region CR:  $H_T$  dist. or total yield Ο





Data

∏tt + liaht

Non-tt

tTH (norm)

Pre-Fit Bkad

ATLAS

SB<sup>≥6j</sup>

Post-Fit

GeV

Events / 25

300

200

100

Single Lepton

√s = 13 TeV. 36.1 fb<sup>-1</sup>

# $t\bar{t}H (H \rightarrow b\bar{b})$ fit

- Combined profile likelihood fit to all 19 regions is performed
  - Control background and systematic uncertainties
  - $\rightarrow$  Reduce uncertainties



## $t\bar{t}H (H \rightarrow b\bar{b})$ results

#### Phys. Rev. D 97 (2018) 072016

- Dominated by systematic uncertainties
- BKG MC stat. uncertainties are also large

| Uncertainty source                             | $\Delta \mu$ |       |  |
|------------------------------------------------|--------------|-------|--|
| $t\bar{t} + \ge 1b$ modelling                  | +0.46        | -0.46 |  |
| Background model statistics                    | +0.29        | -0.31 |  |
| Jet flavour tagging                            | +0.16        | -0.16 |  |
| Jet energy scale and resolution                | +0.14        | -0.14 |  |
| $t\bar{t}H$ modelling                          | +0.22        | -0.05 |  |
| $t\bar{t} + \geq 1c$ modelling                 | +0.09        | -0.11 |  |
| Jet-vertex association, pileup modelling       | +0.03        | -0.05 |  |
| Other background modelling                     | +0.08        | -0.08 |  |
| $t\bar{t}$ + light modelling                   | +0.06        | -0.03 |  |
| Luminosity                                     | +0.03        | -0.02 |  |
| Light lepton $(e, \mu)$ ID, isolation, trigger | +0.03        | -0.04 |  |
| Total systematic uncertainty                   | +0.57        | -0.54 |  |
| $t\bar{t} + \geq 1b$ normalisation             | +0.09        | -0.10 |  |
| $t\bar{t} + \geq 1c$ normalisation             | +0.02        | -0.03 |  |
| Statistical uncertainty                        | +0.29        | -0.29 |  |
| Total uncertainty                              | +0.64        | -0.61 |  |



 $(1.6 \sigma \text{ expected})$ 

# ttH (multilepton) analysis with 2015+2016 data

- $H \rightarrow W^+ W^- / Z Z^* / \tau \tau \& t \bar{t} \rightarrow 1 \ell / 2 \ell$
- 7 channels depending on # leptons and #  $\tau_{had}$
- Split in 8 SRs & 4 CRs
- Main analysis challenge: reducible backgrounds:  $t\bar{t}\gamma$ ,  $t\bar{t}Z$
- Misidentification of e charge reduced with dedicated BDT
- Non-prompt *e* or *µ* reduced with dedicated BDT
- Fake  $\tau_{had}$  significant background in  $\tau$  channels
- Prompt e or  $\mu$  estimated from MC







Observation of the *t*tH production

#### Johannes Mellenthin

# ttH (multilepton) results

#### Phys. Rev. D 97 (2018) 072003

- Profile likelihood fit of the 12 regions
  - BDT discriminant used in 5 SRs, Ο
  - total yield used in regions with low stats Ο





- Total systematics  $\approx$  statistical uncertainty (± 0.30)  $\rightarrow$  Significance: 4.1  $\sigma$  (2.8  $\sigma$  expected)  $\rightarrow$  Evidence for ttH production!
- Main systematics: signal modelling, JES/JER

## $t\bar{t}H (H \rightarrow \gamma\gamma)$ analysis with 2015-2017 data

- Channel used since Run-I (including 7 TeV)
- Sensitivity improved by ~50% compared to 2015+2016 data analysis (refined analysis strategy and updated reconstruction software)
- $H \rightarrow \gamma \gamma$  with 105 GeV <  $m_{\gamma \gamma}$  < 160 GeV &  $\geq$  1 *b*-tagged jet
- Two SRs
  - Hadronic:  $\geq 2$  jets & 0 isolated  $\ell$  (only e,  $\mu$ )
  - Leptonic:  $\geq$  1 isolated  $\ell$  (only  $e, \mu$ )
- Train BDT in each region with object-level variables



# $t\bar{t}H (H \rightarrow \gamma\gamma)$ fit

- Categorize events depending on the value of the BDT response
  - 4 categories for the hadronic channel
  - 3 categories for the leptonic channel
  - $\rightarrow$  Optimize sensitivity to the ttH signal
- Global fit of diphoton mass is performed
  Weighted m<sub>vv</sub> spectrum
- Main systematics
  - Signal modelling
  - $\circ$   $\gamma$  isolation and energy scale & resolution
  - JES/JER



# $t\bar{t}H (H \rightarrow \gamma\gamma)$ results

Phys. Lett. B 784 (2018) 173

• Expected and observed event yields

| Expected                      |                                                         |                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| tīH (                         | signal)                                                 | Non-                                                                                                              | t <i>īH</i> Higgs                                                                                                                                                           | No                                                                                                                                                                                                                                                              | n-Higgs                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                                                                                                              | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| $H \rightarrow \gamma \gamma$ |                                                         |                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 4.2                           | ± 1.1                                                   | 0.49                                                                                                              | ± 0.33                                                                                                                                                                      | 1.8                                                                                                                                                                                                                                                             | ± 0.5                                                                                                                                                                                                                                                                                                                                                 | 6.4                                                                                                                                                                                                                                                                                                 | ± 1.3                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 3.4                           | $\pm 0.7$                                               | 0.7                                                                                                               | $\pm 0.6$                                                                                                                                                                   | 7.5                                                                                                                                                                                                                                                             | ± 1.1                                                                                                                                                                                                                                                                                                                                                 | 11.6                                                                                                                                                                                                                                                                                                | ± 1.5                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 4.7                           | $\pm 0.9$                                               | 2.0                                                                                                               | ± 1.7                                                                                                                                                                       | 32.9                                                                                                                                                                                                                                                            | $\pm 2.2$                                                                                                                                                                                                                                                                                                                                             | 39.6                                                                                                                                                                                                                                                                                                | $\pm 3.2$                                                                                                                                                                                                                                                                                                                                                                                                                          | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 3.0                           | $\pm 0.5$                                               | 3.2                                                                                                               | $\pm 3.1$                                                                                                                                                                   | 55.0                                                                                                                                                                                                                                                            | $\pm 2.8$                                                                                                                                                                                                                                                                                                                                             | 61                                                                                                                                                                                                                                                                                                  | ± 5                                                                                                                                                                                                                                                                                                                                                                                                                                | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 4.5                           | $\pm 1.0$                                               | 0.24                                                                                                              | $\pm 0.09$                                                                                                                                                                  | 2.2                                                                                                                                                                                                                                                             | $\pm 0.6$                                                                                                                                                                                                                                                                                                                                             | 6.9                                                                                                                                                                                                                                                                                                 | $\pm 1.2$                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2.2                           | $\pm 0.4$                                               | 0.27                                                                                                              | $\pm 0.10$                                                                                                                                                                  | 4.6                                                                                                                                                                                                                                                             | $\pm 0.9$                                                                                                                                                                                                                                                                                                                                             | 7.1                                                                                                                                                                                                                                                                                                 | $\pm 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 0.82                          | $\pm 0.18$                                              | 0.30                                                                                                              | $\pm 0.13$                                                                                                                                                                  | 4.6                                                                                                                                                                                                                                                             | $\pm 0.9$                                                                                                                                                                                                                                                                                                                                             | 5.7                                                                                                                                                                                                                                                                                                 | $\pm 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                               | tīH (<br>4.2<br>3.4<br>4.7<br>3.0<br>4.5<br>2.2<br>0.82 | $t\bar{t}H$ (signal)<br>4.2 ± 1.1<br>3.4 ± 0.7<br>4.7 ± 0.9<br>3.0 ± 0.5<br>4.5 ± 1.0<br>2.2 ± 0.4<br>0.82 ± 0.18 | $t\bar{t}H$ (signal)Non-i $4.2 \pm 1.1$ $0.49$ $3.4 \pm 0.7$ $0.7$ $4.7 \pm 0.9$ $2.0$ $3.0 \pm 0.5$ $3.2$ $4.5 \pm 1.0$ $0.24$ $2.2 \pm 0.4$ $0.27$ $0.82 \pm 0.18$ $0.30$ | Expect $t\bar{t}H$ (signal)Non- $t\bar{t}H$ HiggsH4.2 $\pm 1.1$ 0.49 $\pm 0.33$ 3.4 $\pm 0.7$ 0.7 $\pm 0.6$ 4.7 $\pm 0.9$ 2.0 $\pm 1.7$ 3.0 $\pm 0.5$ 3.2 $\pm 3.1$ 4.5 $\pm 1.0$ 0.24 $\pm 0.09$ 2.2 $\pm 0.4$ 0.27 $\pm 0.10$ 0.82 $\pm 0.18$ 0.30 $\pm 0.13$ | Expected $t\bar{t}H$ (signal)Non- $t\bar{t}H$ HiggsNo $H \rightarrow \gamma\gamma$ $H \rightarrow \gamma\gamma$ 4.2 $\pm 1.1$ 0.49 $\pm 0.33$ 1.83.4 $\pm 0.7$ 0.7 $\pm 0.6$ 7.54.7 $\pm 0.9$ 2.0 $\pm 1.7$ 32.93.0 $\pm 0.5$ 3.2 $\pm 3.1$ 55.04.5 $\pm 1.0$ 0.24 $\pm 0.09$ 2.22.2 $\pm 0.4$ 0.27 $\pm 0.10$ 4.60.82 $\pm 0.18$ 0.30 $\pm 0.13$ 4.6 | Expected $t\bar{t}H$ (signal)Non- $t\bar{t}H$ HiggsNon-Higgs $H \rightarrow \gamma\gamma$ 4.2 ± 1.10.49 ± 0.331.8 ± 0.53.4 ± 0.70.7 ± 0.67.5 ± 1.14.7 ± 0.92.0 ± 1.732.9 ± 2.23.0 ± 0.53.2 ± 3.155.0 ± 2.84.5 ± 1.00.24 ± 0.092.2 ± 0.62.2 ± 0.40.27 ± 0.104.6 ± 0.90.82 ± 0.180.30 ± 0.134.6 ± 0.9 | Expected $t\bar{t}H$ (signal)Non- $t\bar{t}H$ HiggsNon-Higgs $H \rightarrow \gamma\gamma$ 4.2 $\pm 1.1$ 0.49 $\pm 0.33$ 1.8 $\pm 0.5$ 6.43.4 $\pm 0.7$ 0.7 $\pm 0.6$ 7.5 $\pm 1.1$ 11.64.7 $\pm 0.9$ 2.0 $\pm 1.7$ 32.9 $\pm 2.2$ 39.63.0 $\pm 0.5$ 3.2 $\pm 3.1$ 55.0 $\pm 2.8$ 614.5 $\pm 1.0$ 0.24 $\pm 0.09$ 2.2 $\pm 0.6$ 6.92.2 $\pm 0.4$ 0.27 $\pm 0.10$ 4.6 $\pm 0.9$ 7.10.82 $\pm 0.18$ 0.30 $\pm 0.13$ 4.6 $\pm 0.9$ 5.7 | Expected $t\bar{t}H$ (signal)Non- $t\bar{t}H$ HiggsNon-HiggsTotal $H \rightarrow \gamma\gamma$ 4.2 $\pm 1.1$ 0.49 $\pm 0.33$ 1.8 $\pm 0.5$ 6.4 $\pm 1.3$ 3.4 $\pm 0.7$ 0.7 $\pm 0.6$ 7.5 $\pm 1.1$ 11.6 $\pm 1.5$ 4.7 $\pm 0.9$ 2.0 $\pm 1.7$ 32.9 $\pm 2.2$ 39.6 $\pm 3.2$ 3.0 $\pm 0.5$ 3.2 $\pm 3.1$ 55.0 $\pm 2.8$ 61 $\pm 5$ 4.5 $\pm 1.0$ 0.24 $\pm 0.09$ 2.2 $\pm 0.6$ 6.9 $\pm 1.2$ 2.2 $\pm 0.4$ 0.27 $\pm 0.10$ 4.6 $\pm 0.9$ 7.1 $\pm 1.0$ 0.82 $\pm 0.18$ 0.30 $\pm 0.13$ 4.6 $\pm 0.9$ 5.7 $\pm 0.9$ |  |  |



- $\mu = 1.4 \pm_{0.4}^{0.5} (\begin{smallmatrix} 0.4 \\ 0.3 \end{smallmatrix})$  stat.)
- Combined significance: 4.1  $\sigma$  (3.7  $\sigma$  expected)
  - hadronic: 3.8  $\sigma$  (2.7  $\sigma$  exp.) leptonic: 1.9  $\sigma$  (2.5  $\sigma$  exp.)
- → Evidence for ttH production!

# $t\bar{t}H (H \rightarrow ZZ^* \rightarrow 4\ell)$ analysis with 2015-2017 data

- New channel with 13 TeV data
- $H \rightarrow 4e/4\mu/2e2\mu$ , SFOS
- H candidate: 115 GeV <  $m_{\Delta \ell}$  < 130 GeV
- Two SRs enriched in  $t\bar{t}H$ 
  - $\circ \geq 1 b$ -tagged jet
  - Hadronic:  $\geq$  4 jets & leptonic:  $\geq$  1 $\ell$  +  $\geq$  2 jets
  - Hadronic selection split in two subregions
    - BDT trained from 11 variables
    - 2 bins highest one with higher S/B
- Expected significance:  $1.2 \sigma$
- No event observed  $\rightarrow \mu = \sigma_{\text{measured}} / \sigma_{\text{SM}} < 1.8 @ 68\% \text{ C.L.}$



#### Combination

## Combination 2015+2016(+2017) data

- Observation (5.8  $\sigma$ ) with Run-II data  $\rightarrow \sigma_{obs}^{}/\sigma_{SM}^{}$  = 1.32 ±<sup>0.28</sup><sub>0.26</sub>
- Improved significance when including Run-I
- Result compatible with SM predictions and constraints from indirect loop contributions



| Analysis                           | Integrated             | $t\bar{t}H$ cross                                           | Obs.         | Exp.         |
|------------------------------------|------------------------|-------------------------------------------------------------|--------------|--------------|
|                                    | luminosity $[fb^{-1}]$ | section [fb]                                                | sign.        | sign.        |
| $H\to\gamma\gamma$                 | 79.8                   | $710_{-190}^{+210}$ (stat.) $_{-90}^{+120}$ (syst.)         | 4.1 $\sigma$ | $3.7 \sigma$ |
| $H \rightarrow \text{multilepton}$ | 36.1                   | 790 ±150 (stat.) $^{+150}_{-140}$ (syst.)                   | 4.1 $\sigma$ | $2.8~\sigma$ |
| $H \to b \bar{b}$                  | 36.1                   | $400 {}^{+150}_{-140}$ (stat.) $\pm 270$ (syst.)            | 1.4 $\sigma$ | 1.6 $\sigma$ |
| $H\to ZZ^*\to 4\ell$               | 79.8                   | <900 (68%  CL)                                              | $0 \sigma$   | 1.2 $\sigma$ |
| Combined (13 TeV)                  | 36.1 - 79.8            | $670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$ | $5.8 \sigma$ | $4.9 \sigma$ |
| Combined $(7, 8, 13 \text{ TeV})$  | 4.5, 20.3, 36.1 - 79.8 | —                                                           | $6.3 \sigma$ | 5.1 $\sigma$ |

Johannes Mellenthin

Observation of the *ttH* production

ICPPA-2018

## Conclusions

- Combination of different ttH decay channels necessary for a robust ttH measurement
  - The *t*tH production was observed!
  - The top and the Higgs do interact!
  - Results in agreement with theory



#### Outlook

- Ongoing effort to improve uncertainties
  - More data, include 2017 data in all analyses (and 2018 data for full Run-II analyses)
  - Improving analysis techniques
  - Discussions in LHC Higgs cross-section working group with theorists and CMS

#### Thank you for your attention!