Measurements of CPV at LHCb

Konrad Klimaszewski

NCBJ, Warsaw On behalf of the LHCb collaboration

> ICPPA-2018 Moscow

CP tests in beauty

CP tests in charm

CP tests in baryons

Summary

CP tests in beauty

CP tests in charm

CP tests in baryons

Summary

- Study of beauty and charm hadron decays is complementary to direct searches for new particles
- Can discover New Physics due to the effect of virtual new particles in quantum loops
- Through the study of the interference of different quantum paths → access to the magnitude of the couplings of NP and also to their phase (for instance, by measuring CP asymmetries)

Proton collisions at 7-13TeV:

- huge heavy flavour production cross-sections: $1.4 \times 10^{11} \ b\bar{b}$ -pairs per fb^{-1} (Run 2)
- all beauty, charm and strange hadrons produced $(B_s^0, \Lambda_b^0, B_c^+, D_s^+, \Lambda_c^+, \Sigma^+, ...)$

CP violation in the Standard Model

- In SM, CPV is accommodated in weak interactions $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ $\cong \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$ Unitarity Triangle
- The η is the only source of CPV in the SM.

 $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

(1st and 3rd CKM columns)

Over-constrain unitarity triangle apex coordinates for a stringent test of SM:

- CP violation measurements give angles
- CP conserving measurements give sides

The γ angle measurements

LHCb-CO	ONF-20	18-002
---------	--------	--------

B decay	D decay	Method	Ref.	$Dataset^{\dagger}$	Status since last com-
					bination [3]
$B^+ \rightarrow DK^+$	$D \rightarrow h^+h^-$	GLW	[14]	Run 1 & 2	Minor update
$B^+ \rightarrow DK^+$	$D \rightarrow h^+ h^-$	ADS	[15]	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[15]	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow h^+ h^- \pi^0$	GLW/ADS	[16]	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow K_s^0 h^+ h^-$	GGSZ	[17]	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow K_s^0 h^+ h^-$	GGSZ	[18]	Run 2	New
$B^+ \rightarrow DK^+$	$D \rightarrow K^0_s K^+ \pi^-$	GLS	[19]	Run 1	As before
$B^+ \rightarrow D^* K^+$	$D \rightarrow h^{+}h^{-}$	GLW	[14]	Run 1 & 2	Minor update
$B^+ \rightarrow DK^{*+}$	$D \rightarrow h^+ h^-$	GLW/ADS	[20]	Run 1 & 2	Updated results
$B^+ \rightarrow DK^{*+}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[20]	Run 1 & 2	New
$B^+ \rightarrow DK^+\pi^+\pi^-$	$D \rightarrow h^+h^-$	GLW/ADS	[21]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K^{+}\pi^{-}$	ADS	[22]	Run 1	As before
$B^0 \rightarrow DK^+\pi^-$	$D \rightarrow h^+h^-$	GLW-Dalitz	[23]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_s^0 \pi^+ \pi^-$	GGSZ	[24]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	[25]	Run 1	Updated results
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^+ \pi^- \pi^+$	TD	[26]	Run 1	New

 † Run 1 corresponds to an integrated luminosity of 3 fb⁻¹ taken at centre-of-mass energies of 7 and 8 TeV

. Run 2 corresponds to an integrated luminosity of 2 $\,{\rm fb}^{-1}\,$ taken at a centre-of-mass energy of 13 $\,{\rm TeV}$.

$$\gamma = \left(74.0^{+5.0}_{-5.8}
ight)$$

- Most precise determination of γ from a single experiment
- World average: $\gamma = \left(73.5^{+4.2}_{-5.1}
 ight)$ [HFLAV]

CP tests in beauty

CP tests in charm

CP tests in baryons

Summary

$$B_s^0$$
 CP violating phase ϕ_s

Mass eigenstates \neq flavour eigenstates:

 $\begin{aligned} |B_L\rangle = p |B_s^0\rangle + q |\overline{B}_s^0\rangle \\ |B_H\rangle = p |B_s^0\rangle - q |\overline{B}_s^0\rangle \end{aligned} \Rightarrow \text{mixing} \end{aligned}$

 $B_{*}^{0} \bigvee_{t,c,u}^{t} \varphi_{W^{+}}^{W^{+}} \bigcup_{t,c,u}^{s} B_{*}^{W^{+}} \bigcup_{W^{-}}^{s} \bigcup_{b}^{W^{+}} \bigcup_{W^{-}}^{t} \bigcup_{b}^{W^{+}} \bigcup_{t}^{t} (1)$

- CPV in mixing: $|q/p| \neq 1$,
- CPV in decays: $|A_f/\overline{A}_f| \neq 1$,

q/p - complex number $A_f, \ \overline{A}_f$ - complex aplitudes

Even with no CPV in mixing or decay, one can generate CPV in the interference:

$$\phi_s \equiv -\arg(\lambda_f) \equiv -\arg\left(\frac{q}{p}\frac{\overline{A_f}}{\overline{A_f}}\right) \neq 0$$

LHCb

Two-body $B_{(s)}^{0}$ decays Phys.Rev. D 98, 032004 (2018)

Simultaneous fit to to the distributions of reconstructed candidates: $B^0 \rightarrow \pi^+\pi^-$, $B^0_s \rightarrow K^+K^-$, $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow \pi^+K^-$.

• Time-integrated asymmetries for $B^0 o K^+\pi^-$ and $B^0_s o \pi^+K^-$:

$$A_{CP} = rac{\left|ar{A}_{ar{f}}
ight|^{2} - \left|A_{f}
ight|^{2}}{\left|ar{A}_{ar{f}}
ight|^{2} + \left|A_{f}
ight|^{2}}$$

• Time-dependent asymmetries for $B^0 o \pi^+\pi^-$ and $B^0_s o K^+K^-$:

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)} = \frac{-C_f \cos(\Delta m_{d,s} t) + S_f(\Delta m_{d,s} t)}{\cosh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right)}$$

 C_f - CPV in the decay, S_f - CPV in interference between decay and mixing

Two-body $B_{(s)}^0$ decays Phys.Rev. D 98, 032004 (2018)

- Analysis performed using full Run 1 data sample (\sim 3fb $^{-1}$)
- Time-dependent asymmetries ingredients:
 - flavour tagging
 - decay-time resolution
 - decay-time acceptance
- Time-independent asymmetries ingredients:
 - final state detection asymmetries
 - production asymmetry

- First measurement of $A_{K^+K^-}^{\Delta\Gamma}$
- Strongest evidence of CPV in B_s^0 sector: confirmed at 4σ

$$C_{\pi^{+}\pi^{-}} = -0.34 \pm 0.06 \pm 0.01$$

$$S_{\pi^{+}\pi^{-}} = -0.63 \pm 0.05 \pm 0.01$$

$$C_{K^{+}K^{-}} = 0.20 \pm 0.06 \pm 0.02$$

$$S_{K^{+}K^{-}} = -0.18 \pm 0.06 \pm 0.02$$

$$A_{K^{+}K^{-}}^{\Delta\Gamma} = -0.79 \pm 0.07 \pm 0.10$$

$$A_{CP}^{B_{0}^{0}} = (-8.4 \pm 0.4 \pm 0.3)\%$$

$$A_{CP}^{B_{0}^{0}} = (21.3 \pm 1.5 \pm 0.3)\%$$

Konrad Klimaszewski, ICPPA 2018

CP tests in beauty

CP tests in charm

CP tests in baryons

Summary

$D^0 ightarrow K^0_s K^0_s$ decays

- D⁰ mixing is established
- CP violation yet unobserved!
 - $\,\circ\,$ Small value expected from SM $\mathcal{O}(V_{ub}\,V_{cb}^*\,V_{us}\,V_{cs}^*)\sim\mathcal{O}(10^{-3})$
- $A_{CP}(K_s^0K_s^0)$
- Define $A_{raw}(D^0 \to f) = \frac{ND^0 N\overline{D}^0}{ND^0 + N\overline{D}^0}$
- Measure $A_{CP}(D^0 \rightarrow K_s^0 K_s^0)$
- Tag with prompt $D^{*+}
 ightarrow D^0 \pi_s^+$

$$A_{CP} = A_{raw} - A_P(D^{*+}) - A_D(\pi_s^+)$$

• Eliminate detection/production asymmetries using control channel:

 $\Delta A_{CP} \equiv A_{raw}(D^0 \to K_s^0 K_s^0) - A_{raw}(D^0 \to K^+ K^-) = A_{CP}(D^0 \to K_s^0 K_s^0) - A_{CP}(D^0 \to K^+ K^-)$

• The $A^{CP}(D^0 \rightarrow K^+K^-)$ has been measured by LHCb with a precision of 0.2%: Phys. Lett. B767 (2017) 177

$$D^0
ightarrow K^0_s K^0_s$$
 decays

 $\begin{array}{l} \mathcal{L}=&2\,\mathrm{fb}^{-1}@\sqrt{s}=13\mathrm{TeV} \\ 1067\,D^0\to \mathcal{K}^0_s\mathcal{K}^0_s \text{ candidates} \end{array}$

 $A_{CP}(K_s^0 K_s^0) = 0.042 \pm 0.034 \pm 0.010$

Combined with the LHCb Run 1 measurement $A_{CP}(K_s^0 K_s^0) = 0.020 \pm 0.029 \pm 0.010$

CP tests in beauty

CP tests in charm

CP tests in baryons

Summary

CPV in $\Lambda_b^0 \rightarrow p3h$

- Only direct CPV in baryon sector
- Test CPV by comparison of baryon and anti-baryon decay yields

$$A_{CP} = \frac{N(A \to f) - N(\overline{A} \to \overline{f})}{N(A \to f) + N(\overline{A} \to \overline{f})} \propto sin(\delta_1 - \delta_2)sin(\varphi_1 - \varphi_2)$$

 $\delta{-}{\rm strong}$ phase, $\varphi{-}{\rm weak}$ phase

- Effect visible with contributions from at least two amplitudes: $A_1 e^{i\delta_1} e^{i\varphi_1}, A_2 e^{i\delta_2} e^{i\varphi_2}$
- Requires non-vanishing strong and weak phase difference

CPV in $\Lambda_b^0 \rightarrow p3h$

Utilise 4-body final state to construct:

$$C_{\hat{T}} = \vec{p_p} \cdot (\vec{p_{h_1^-}} \times \vec{p_{h_2^+}}), \qquad \overline{C}_{\hat{T}} = \vec{p_p} \cdot (\vec{p_{h_1^+}} \times \vec{p_{h_2^-}})$$

$$\begin{split} & A_{\hat{\tau}}(C_{\hat{\tau}}) = \frac{N(C_{\hat{\tau}} > 0) - N(C_{\hat{\tau}} < 0)}{N(C_{\hat{\tau}} > 0) + N(C_{\hat{\tau}} < 0)} \quad , \text{ for } \Lambda_b^0 \\ & \overline{A}_{\hat{\tau}}(\overline{C}_{\hat{\tau}}) = \frac{N(\overline{C}_{\hat{\tau}} > 0) - N(\overline{C}_{\hat{\tau}} < 0)}{N(\overline{C}_{\hat{\tau}} > 0) + N(\overline{C}_{\hat{\tau}} < 0)} \quad , \text{ for } \overline{\Lambda}_b^0 \end{split} \qquad \begin{aligned} & \mathsf{CP-violating observable:} \\ & a_{CP}^{\hat{\tau} - odd} = \frac{1}{2} (A_{\hat{\tau}} - \overline{A}_{\hat{\tau}}) \\ & a_P^{\hat{\tau} - odd} = \frac{1}{2} (A_{\hat{\tau}} + \overline{A}_{\hat{\tau}}) \end{aligned}$$

Largely insensitive to A_{prod} and A_{reco}

Complementary approach to A_{CP} analysis

- $a_{CP}^{P-odd} \propto cos(\delta_{even} \delta_{odd})sin(\varphi_{even} \varphi_{odd})$ not sensitive if $\delta_{even} \delta_{odd} = \pi/2$ or $3\pi/2$
- $A_{CP} \propto sin(\delta_1 \delta_2)sin(\varphi_1 \varphi_2)$ not sensitive if $\delta_1 \delta_2 = 0$ or π

${\sf CPV} \ {\sf in} \ \Lambda^0_b o p3h$ Nature Physics 13, 391 (2017)

Full Run I sample: $\mathcal{L} = 3 \text{ fb}^{-1}$ $N_{sig}(p\pi^{-}\pi^{+}\pi^{-}) = 6646 \pm 105$ $N_{sig}(p\pi^{-}K^{+}K^{-}) = 1030 \pm 56$

- Scheme A binning in invariant mass combinations, to focus on dominant resonance contributions
- Scheme B- binning in angle Φ between decay planes

Combined result from 2 binning schemes: CP symmetry p-value= 9.8×10^{-4} 3.3σ deviation

Konrad Klimaszewski, ICPPA 2018

$$\Lambda_b^0 \to p K^- \pi^+ \pi^-, \Lambda_b^0 \to p K^- K^+ K^-, \ \equiv_b^0 \to p K^- K^+ \pi^-$$
 Jhep 08 (2018) 039

- Analysis uses Triple Product Asymmetries
- TPA integrated over all phase space for $\Lambda_b^0 \to p K^- \pi^+ \pi^-$:

$$\begin{split} a_P^{\hat{T}-odd} &= (-0.60 \pm 0.84 \pm 0.31)\% \\ a_{CP}^{\hat{T}-odd} &= (-0.81 \pm 0.84 \pm 0.31)\% \end{split}$$

• TPA integrated over all phase space for $\Lambda_b^0 \to p K^- K^+ K^-$:

$$a_P^{\hat{T}-odd} = (-1.56 \pm 1.51 \pm 0.32)\%$$

 $a_{CP}^{\hat{T}-odd} = (1.12 \pm 1.51 \pm 0.32)\%$

• TPA integrated over all phase space for $\Xi_b^0 \to p K^- K^+ \pi^-$:

$$a_P^{\hat{T}-odd} = (-3.04 \pm 5.19 \pm 0.36)\%$$

 $a_{CP}^{\hat{T}-odd} = (-3.58 \pm 5.19 \pm 0.36)\%$

All phase space integrated results are consistent with P and CP conservation
 20 / 24
 Konrad Klimaszewski, ICPPA 2018

 $\Lambda_b^0 o p K^- \pi^+ \pi^-, \Lambda_b^0 o p K^- K^+ K^-,$ $\Xi_b^0 o p K^- K^+ \pi^-$ information

JHEP 08 (2018) 039

- Binned analysis for $\Lambda_b^0 \to p K^- \pi^+ \pi^-$ and $\Lambda_b^0 \to p K^- K^+ K^-$ is performed
- Two binning schemes as in previous results
- All binned measurement consistent with P and CP conservation

CP tests in beauty

CP tests in charm

CP tests in baryons

Summary

Summary and Outlook

- Many great results from Run I and Run II
 - $\circ~$ First evidence of CPV in baryons
- Very successful Run II: in total LHCb already collected $\mathcal{L}=10\,\text{fb}^{-1}$

	LHC era			HL-LHC era		
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)	
ATLAS, CMS	25 fb ⁻¹	100 fb ⁻¹	300 fb ^{−1}	\rightarrow	3000 fb ⁻¹	
LHCb	3 fb⁻¹	8 fb⁻¹	25 fb⁻¹	50 fb⁻¹	*300 fb ⁻¹	

* assumes a future LHCb upgrade to raise the instantaneous luminosity to 2×10^{34} cm⁻²

- The LHCb upgraded detector after Run-2 will handle $\times 5$ instantaneous luminosity, from $4\times 10^{32} cm^{-2} s^{-1}$ to $2\times 10^{33} cm^{-2} s^{-1}$
- The hardware trigger stage will be eliminated, and trigger become fully software based. Many detectors will be replaced.

Thank You

Backup

Same side

- s quark in B⁰_s is produced with s
- $\sim 50\%$ of \overline{s} forms a charged K
- charge of the K identifies flavour of B⁰_s

Opposite side

- in pp collisions b produced mostly in bb pairs
- flavour determined by the charge of decay products of opposite B:
 - leptons
 - kaons
 - global charge of secondary vertex

- Total effective tagging efficiency: $\epsilon(1-2\omega)^2$
- ϵ efficiency of tagging algorithm
- ω frequency of events with wrong tagging
- $Eff = (3.9 \pm 0.25)\%$

 $B_s^0 - \overline{B}_s^0$ oscillations

 Δm_s measured from 1fb $^{-1}$ $B^0_s
ightarrow D^-_s \pi^+$ decays

- High statistics: N ~ 34000 signal candidates
- Self tagging channel
- Five different D_s^- decay modes: $(\phi \pi^-, K^* K^-, K^- K^+ \pi^-, K^- \pi^+ \pi^-, \pi^- \pi^+ \pi^-)$
- Very low background

 $B_s^0 - \overline{B}_s^0$ oscillations

The measured oscillation frequency: $\Delta m_{s} = 17.768 \pm 0.023(stat) \pm 0.006(syst)\,\mathrm{ps^{-1}}$

[New J. Phys. 15 (2013) 053021]

Search for CPV in $\Lambda_b^0, \Xi_b^0 \rightarrow p3h$ decays using TPA

Nature Phys. 13 (2017) 391-396

イロト イロト イミト イミト 三目 のくで

Gediminas Sarpis	CP violation in beauty baryons at LHCb	September 16, 2018	13 / 19
------------------	--	--------------------	---------

Search for CPV in $\Lambda_b^0, \Xi_b^0 \rightarrow p3h$ decays using TPA

Nature Phys. 13 (2017) 391-396

• Phase space integrated results for $\Lambda^0_b \to p \pi^- \pi^+ \pi -$

$$a_P^{\hat{T}-odd} = (-3.71 \pm 1.45 \pm 0.32)\%$$

 $a_{CP}^{\hat{T}-odd} = (1.15 \pm 1.45 \pm 0.32)\%$

• Phase space integrated results for $\Lambda^0_b o p \pi^- K^+ K -$

$$a_P^{\hat{T}-odd} = (3.62 \pm 4.54 \pm 0.42)\% \ a_{CP}^{\hat{T}-odd} = (-0.93 \pm 4.54 \pm 0.42)\%$$

• Phase space integrated results consistent with P and CP conservation

 Gediminas Sarpis
 CP violation in beauty baryons at LHCb
 September 16, 2018
 14 / 19

Search for CPV in $\Lambda_b^0, \Xi_b^0 \rightarrow p3h$ decays using TPA

Nature Phys. 13 (2017) 391-396

- Two binning schemes used to measure $a_{CP}^{\hat{T}-odd}$ in different regions of phase space
- Scheme A- binning in two-body mass combinations
- \bullet Scheme B- Uniform binning in Φ angle between decay planes
- First evidence of CPV in baryons with 3.3σ significance

A_{CP} in $D^0 \rightarrow K_s^0 K_s^0$ - Data Sample

CKM 2018 - 18/09/2018

- 2015+2016 data → 2.0 fb⁻¹
- Two independent samples:
 - LD: one K⁰_s is reconstructed from long tracks and the other from downstream tracks
 - **2.** LL: both K_s^0 are reconstructed from **long** tracks
- Different **resolution** between the two samples

VELO Track

LHCb-PAPER-2018-012 arXiv:1806.01642 submitted to JHEP

LHCb

15

LHCb

A_{CP} in $D^0 \rightarrow K_s^0 K_s^0$ - Data Sample

- Important **background** due to $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ and $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$
- Selection on LL: $[\log \chi^2_{FD} (K^0_{S1}) - 10]^2$ $+ [\log \chi^2_{FD} (K^0_{S2}) - 10]^2 < 16$
- Selection on LD: $\log \chi^2_{FD} (K^0_{SL}) > 2.5$

LHCb-PAPER-2018-012 arXiv:1806.01642 submitted to JHEP

F. Betti - INFN Bologna, University of Bologna & CERN

CKM 2018 - 18/09/2018

16

CPV observables

Introduction

• Time-integrated *CPV* asymmetries in $B^0 \to K^+\pi^-$ and $B_s \to \pi^+K^-$ decays are defined as:

$$A_{CP} = rac{|\overline{A}_{\overline{f}}|^2 - |A_f|^2}{|\overline{A}_{\overline{f}}|^2 + |A_f|^2}$$

• The main *OPV* observables are the time-dependent asymmetries of $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$ decays:

$$A(t) = \frac{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} = \frac{-\mathbf{C}_{\mathbf{f}} \cos\left(\Delta m_{d(s)}t\right) + \mathbf{S}_{\mathbf{f}} \sin\left(\Delta m_{d(s)}t\right)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right)}$$

$$\begin{array}{l} \boldsymbol{C}_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \quad \boldsymbol{S}_{f} = \frac{2 I m \lambda_{f}}{1 + |\lambda_{f}|^{2}} \quad \boldsymbol{A}_{f}^{\Delta \Gamma} = \frac{2 R e \lambda_{f}}{1 + |\lambda_{f}|^{2}} \\ \begin{array}{l} \text{direct } \mathcal{CPV} \\ |\mathcal{C}_{f}|^{2} + |\mathcal{S}_{f}|^{2} + |\mathcal{A}_{f}^{\Delta \Gamma}|^{2} = 1 \text{ (condition not imposed)} \end{array} \end{array}$$

• The knowledge of the flavour of the *B* candidate at production is required \implies flavour tagging tool is a key ingredient of the analysis

4/19

[Davide Fazzini, 10th International Workshop on the CKM Unitarity Triangle, 2018]

• The time dependent asymmetry is measured as:

 $A_{raw}(t) \approx A_{CP} + A_D + A_{PID} + A_P \cos(\Delta m_{d(s)} t)$

- The **production asymmetry** A_P can be extracted by means of the time-dependent fit from the *CP* asymmetries in $B^0 \to K^+\pi^-$ and $B_s \to \pi^+K^-$ decays
- A correction is required taking into account:
 - asymmetry induced by the PID requirements (Α^{Kπ}_{PID})
 - detection asymmetry $(A_D^{K\pi})$
- $A_{P|D}^{\kappa\pi}$ estimated using $D^{*+}
 ightarrow D^{0} (
 ightarrow \kappa^{-}\pi^{+})\pi^{+}$
- $A_D^{K\pi}$ measured using raw asymmetries of Cabibbo-favoured charm decays $D^+ \to K^- \pi^+ \pi^+$ and $D^+ \to K^0 \pi^+$ [JHEP 07 (2014) 041]
- Asymmetries are convoluted with the $B^0_{(s)}
 ightarrow h^+ h'^-$ phase space

$A^{K\pi}_{PID}(B^0_{(s)} ightarrow K^\pm\pi^\mp)$	=	$(-0.04\pm 0.25)\%$
$A^{K\pi}_D(B^0 o K^+\pi^-)$	=	$(-0.900\pm0.141)\%$
$A^{K\pi}_D(B_s o\pi^+K^-)$	=	$(-0.924\pm0.142)\%$

[Phys. Rev. D 98 (2018) 032004]

13/19

[Davide Fazzini, 10th International Workshop on the CKM Unitarity Triangle, 2018]

JHEP 08 (2018) 176

