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1	– vacuum	vessel,	2	– PMT,	3	– copper	housing,	4	– LAr	volume,	5	– LN2 bath,	6	– heater	&	
termocontrol,	7	– gas	filter Mycrolys,	8	– magnetoelectrical pump	Nord & RGA,	9	– Ar (purity
99,9995%),	10	– cryogenic	pump;	В1– В3	– vacuummeters;	М1	– М3	– manometers;	V1– V15	–
valve.
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(*)				Ar2∗ +	Xe +	migration	→	(ArXe)∗ +	Ar (**)					𝐼 = 𝐴$𝑒
&	 ()* + 𝐴,𝑒

&	 ()- − 𝐴/𝑒
&	 ()0

(ArXe)∗ +	Xe +	migration	→	Xe2∗ +	Ar (***)			Shown	in	Summer	2018

There	was	no	experimental	confirmation	of	fast	component	reemission	in	Xe-doped	LAr	before

PSD	plots	and	averaged	WF	with	increasing	of	
Xe concentration
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• First	experimental	measurement	of	interaction	constant	for	the	fast	component	:

kf =	(4.5	± 2.9) × 10-11 см3с-1

• Theoretical	prediction	(A.	Hitachi	[5]):

kf =	3.3 × 10-11 см3с-1	

At	the	concentration	of	60	ppm	(by	mol)	Xe in	LAr	one	can	see	the	beginning	of	the	process	of	fast	
component	reemission	by	Xe.

Motivation

ТРВ problems:
1. Light	reabsorption
2. Bad	holding
3. Degradation	under	UV	

light
4. Non-uniformity	of	

covering
5. 4π-reemission	

[7] Advantages	of	Хе-dopant:
1. Volume	distributed	WLS
2. Clean
3. No	additional	structure	

inside	the	detector
4. No	degradation
5. No	reabsorption	of	

emitted	light• Does	Xe-dopant	reemit	fast	component?
• PSD	analysis	effectiveness?
• Mixture	stability?

Problems
• There	is	no	photodetectors	with	
large	photocathod sensitive	to	
LAr	scintillation	(λ =	128	nm)

• Hard	to	make	effective	wall-
reflector

• One	have	to	use	wavelength	
shifters	(WLS)
• Tetraphenyl	butadiene	

(TPB)
• Other	film	WLS
• Xe-dopant	(λ =	175	nm)

LAr	as	a	scintillator
• Easy	to	clean
• Cheap
• Relatively	high	density
• Detector	scaling	possibility
• Two	scintillation	components
Fast	(τ1)	7	± 1	ns
Slow	(τ2)	1600	± 100	ns

• Pulse	shape	discrimination	(PSD)	
ability

[8]

Test	chamber	
configuration Хе,	ppm QPSD %

Black	walls;	no	samples
(Direct	light	
registration)

1	± 1 99.9	± 0.4

Black	walls, ТРВ 1	± 1 87.3	± 0.7

Black	walls,	ТРВ 30	± 5* 87.2	± 0.9

Teflon	walls,	ТРВ 1	± 1 60	± 2

Teflon	walls,	FS 110	± 32 100.0 ± 0.3

PSD	quality QPSD(%)	=	
part	of	α-particles	
obtained	after	cut	by	
F40-parameter,	γ-
background	reduced	
by	factor	of	1000.

PSD	quality	and	mixture	stability

Mixture	stability

(*)		Up	to 30	ppm	Xe QPSD is	lower	then	for	pure	LAr	with	TPB.
It	is	consistent	with	previous	experiments	[2-4].

Lower	P,	T	at	the	beginning	of	long	run	=>	PMT	parameters	may	vary.
F40,	Tf,	Ts don’t	depend	on	PMT	parameters.
Mixture	is	stable.

• Up	to	60	ppm	Xe by	mol one	can	use	3-terms	fitting	model	
proposed	by	C.G.	Wahl	et	al	[2]

𝐼 = 𝐴$𝑒
&	 12* + 𝐴,𝑒

&	 12- − 𝐴/𝑒
&	 120

Tf,	Ts – decay	times	for	the	fast	and	slow	component	
correspondently,	Td – transfer	time	(the	same	parameter	for	the	fast	
and	slow	component	according	C.G.	Wahl	et	al)

• According	to	A.	Hitachi	[5]:
• Transferring	constant	for	the	fast	component	in	3	times	larger	
then	for	the	slow	component

• Transfer	mechanism	for	the	fast	component	start	working	at	
big	concentrations	of	Xe (200	ppm	by	mass)

• In	this	case	light	emission	function	should	consist	of	4	terms:

𝐼 = 𝐴$𝑒
& 1
2* + 𝐴,𝑒

& 12- − 𝐴/$𝑒
& 1
20* − 𝐴/,𝑒

& 1
20-

Tdf,	Tds – transfer	time	for	the	fast	and	slow	components	
correspondently

16	ppm

200	ppm

Conclusion
• We	confirmed	experimentally	for	the	first	time	that	the	fast	component	is	reemitted	by	high	concentration	of	Xe-dopant
• Mixture	stability	was	shown
• First	experimental	measurement	of	the	transfer	constant	kf was	done
• PSD	quality	was	shown	to	be	better	then	for	the	pure	LAr	with	TPB	WLS

• Thus	Xe-dopant	with	concentration	of	200	ppm	by	mol can	be	used	as	the	only	one	WLS	in	LAr	detector
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PMT	FEU-181	(MELZ,	Moscow)

VUV	sensitive:	MgF2 window
multialkali photocathod

Can	operate	at	cold	(down	to	LN2 temperature)
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