



# T2K results and plans ICPPA 2018

Andy Chappell for the T2K Collaboration

23 October 2018

#### 3-flavour neutrino oscillations



- Long baseline experiments can measure:
  - $\theta_{23}$  and  $\Delta m_{32}^2$  via disappearance channel
  - $\theta_{13}$  and  $\delta_{CP}$  via appearance channel
  - Mass ordering



### The T2K experiment

- Long baseline neutrino oscillation experiment in Japan
  - $\nu_{\mu}$  beam produced at J-PARC, Tokai
  - Near detectors at J-PARC, 280m downstream of target
  - Super-Kamiokande (SK) far detector, 295km downstream of target in Kamioka
  - Off-axis beam produces energy spectrum peaked at 0.6 GeV
- $\blacksquare$  Precision measurements of  $\nu_{\mu}$  disappearance
- $\blacksquare$  Originally designed to discover  $\nu_e$  appearance
- Currently searching for CP-violation



# Neutrino beamline

- Three horn magnets focus  $\pi$  to produce  $\nu$ -mode or  $\bar{\nu}$ -mode beam
- Stable beam running at 485kW
- Delivered  $3.16 \times 10^{21}$  total protons on target (POT)
- Analysis presented uses  $2.65 \times 10^{21}$ POT

Accumulated POT

35 30

25 20

15

10

2010

201

2012

2013

2014



# Analysis approach

- Neutrino flux model
  - Simulation and NA61 and T2K replica target data on π and K yields
- Neutrino cross-section model
  - Simulation and external data on  $\nu/e/h$  interactions
- Detector model
  - Simulation and calibration and test beam data
- Make predictions at ND280 and SK
  - Parametrise cross-section and flux model
  - Constrain cross-section and flux by tuning ND280 prediction to observation
- Extract oscillation physics
  - Perform simultaneous fits of the 5 SK samples to measure oscillation parameters

### ND280 data fit





| $\nu_{\mu}$ sample                 | 14.05 | 2.00 |
|------------------------------------|-------|------|
| $ar u_\mu$ sample                  | 11.46 | 2.68 |
| $\nu_e$ sample                     | 14.92 | 3.02 |
| $ar{ u}_e$ sample                  | 12.00 | 2.86 |
| $\nu_e$ sample with decay electron | 12.02 | 3.82 |

# Super-Kamiokande far detector

- 50kt water Cherenkov detector
- Inner detector instrumented with 11000 PMTs for 40% photo coverage
- Excellent ν<sub>e</sub>/ν<sub>µ</sub> separation and good reconstruction at T2K energy



(a)  $\mu$ -like ring

#### (b) e-like ring



#### Neutrino oscillation at SK



2.5° off-axis beam produces flux peak in the region of the oscillation maximum

#### Recent analysis improvements

- Additional neutrino-nucleus effects in cross-section model
- Addition of  $\nu_e \ \mathsf{CC}1\pi$  sample adds  $\sim 10\%$  to  $\nu_e$  sample
- Increase in SK fiducial volume:
  - Used to cut all vertices < 2m from detector wall
  - Now consider particle trajectory to define towall
  - $\blacksquare$  Variables tuned to each sample, but now have towall  $\sim 2\text{m},$  wall  $\sim 50\text{cm}$
  - Increases statistics by 15-20%
- $\blacksquare$  Total increase in statistics of  $\sim 30\%$



#### SK data fit



#### SK event rates

|                                              | $\delta_{CP} = -\pi/2$ | $\delta_{CP} = 0$ | $\delta_{CP} = \pi/2$ | $\delta_{CP} = \pi$ | Observed |
|----------------------------------------------|------------------------|-------------------|-----------------------|---------------------|----------|
| $ u_{\mu} $ -like sample                     | 268.525                | 268.232           | 268.494               | 268.880             | 243      |
| $\nu_e$ -like sample                         | 73.780                 | 61.615            | 50.072                | 62.238              | 75       |
| $ar{ u}_{\mu}$ -like sample                  | 95.528                 | 95.306            | 95.529                | 95.770              | 102      |
| $\bar{\nu}_{e}$ -like sample                 | 11.753                 | 13.403            | 14.899                | 13.250              | 9        |
| $\nu_e \operatorname{CC1}\pi^+$ -like sample | 6.928                  | 6.009             | 4.869                 | 5.788               | 15       |

- $\sin^2 \theta_{12} = 0.304$
- $\Delta m_{21}^2 = 7.530 \times 10^{-5} \text{ eV}^2 \text{ c}^{-4}$
- $\sin^2 \theta_{23} = 0.528$
- $\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2 \text{ c}^{-4}$
- $\sin^2 \theta_{13} = 2.19 \times 10^{-2}$
- Normal ordering

 $\Delta m^2$  vs sin<sup>2</sup>  $\theta_{23}$ 





(b) Data



(c) MC

|                          | Normal                           | Inverted                         |  |  |
|--------------------------|----------------------------------|----------------------------------|--|--|
| $\sin^2 \theta_{23}$     | $0.536\substack{+0.031\\-0.046}$ | $0.536\substack{+0.031\\-0.041}$ |  |  |
| $ \Delta m^2 $           | $2.434\pm0.064$                  | $2.410^{+0.062}_{-0.063}$        |  |  |
| $(10^{-3} \text{ eV}^2)$ |                                  |                                  |  |  |

Andy Chappell - University of Warwick

 $\delta_{CP}$  vs sin<sup>2</sup>  $\theta_{13}$ 





(b) Data (T2K + reactor)

- Sensitivity assumptions:
   sin<sup>2</sup> θ<sub>13</sub> = 0.0219 (PDG 2016)
   sin<sup>2</sup> θ<sub>23</sub> = 0.528
   δ<sub>CP</sub> = -1.601
- Data constraint stronger than sensitivity

c) MC (T2K-only)ndy Chappell - University of Warwick

 $\delta_{CP}$ 



- CP conservation is rejected at  $2\sigma$
- 19% of toys exclude CP conservation at  $2\sigma$  (both  $\delta_{CP} = 0$  and  $\delta_{CP} = \pi$ )

# Mass ordering and octant

 T2K also performs a Bayesian analysis, used to express our confidence about the mass ordering and octant

|          | $\sin^2 	heta_{23} \le 0.5$ | $\sin^2 \theta_{23} > 0.5$ | Sum   |
|----------|-----------------------------|----------------------------|-------|
| Normal   | 0.204                       | 0.684                      | 0.888 |
| Inverted | 0.023                       | 0.089                      | 0.112 |
| Sum      | 0.227                       | 0.773                      | 1     |



- We see a preference for normal ordering with a Bayes factor of 7.9
- We see a preference for the upper octant with a Bayes factor of 3.4
- Bayes factor between 3.16 and 10 corresponds to 'substantial' on the Jeffreys scale, but no strong statistical conclusions

#### $\bar{\nu}_e$ appearance

- Two hypotheses:
  - Standard 3-flavour ν
    <sub>e</sub> appearance (β = 1)
  - No  $\bar{\nu}_e$  appearance  $(\beta = 0)$
- Rate + shape analysis:

| β           | Hypothesis    | p-value    |
|-------------|---------------|------------|
| $\beta = 0$ | No appearance | p = 0.233  |
| $\beta = 1$ | Appearance    | p = 0.0867 |

 No strong statistical conclusion yet



#### Recent developments

- WAGASCI and BabyMIND near detectors recently installed
   WAGASCI:
  - Measures neutrino interaction cross-sections on hydrocarbon and water
  - On-axis modules taking data since 2016, with off-axis modules installed this year
- BabyMIND:
  - Magnetised spectrometry and charge ID for WAGASCI, with plastic scintillators made at INR, Russia
  - Constructed at CERN and installed in ND280 complex this year



# SK Gadolinium upgrade

- Super-Kamiokande tank is open for maintenance and repairs
- This will be followed by Gadolinium doping
- Gadolinium has a high neutron capture cross-section and produces a delayed 8 MeV photon cascade allowing *v* tagging
  - Initial phase 0.02% Gd for 50% neutron capture rate
  - Later phase 0.2% Gd for 90% neutron capture rate
- Greater CP-Violation sensitivity due to charge discrimination



#### T2K run extension

- T2K's primary goal is now observation of CP-violation in the neutrino sector
- Propose to collect  $2 \times 10^{22}$  POT by  $\sim 2026$  (arXiv:1609.04111)
- Provides up to  $3\sigma$  CP-violation sensitivity



# ND280 upgrade

 $\blacksquare$  As part of the run extension aim to reduce systematics to  $\sim 4\%$ 

- Full polar angle acceptance
- Fiducial mass of a few tonnes
- High efficiency for short tracks
- Good timing to determine track direction
- Submitted proposal to CERN SPSC (http://cds.cern.ch/record/2299599)
- TDR by end of year
- Aim to install 2021



#### Conclusion

- $\blacksquare$  Significant increase to data set with addition of Run 9a-9c, with 2.61  $\times$  10^{21} total POT
- $\blacksquare$  Ongoing analysis including Run 9d will see this increase to  $3.16\times10^{21}$  total POT
- $\blacksquare$  CP-conservation excluded at  $2\sigma$
- Preference for normal mass ordering with a Bayes factor of 7.9
- Various upgrades allow for the possibility of observing evidence for CP-violation with current generation experiments

# Backup

#### Systematic errors

|                                           | 1-Ri | ng $\mu$    | 1-Ring e |             |              |                 |
|-------------------------------------------|------|-------------|----------|-------------|--------------|-----------------|
| Error source                              | ν    | $\bar{\nu}$ | ν        | $\bar{\nu}$ | $\nu$ 1 d.e. | $\nu/\bar{\nu}$ |
| SK Detector                               | 2.40 | 2.01        | 2.83     | 3.79        | 13.16        | 1.47            |
| SK Final State and Secondary Interactions | 2.20 | 1.98        | 3.02     | 2.31        | 11.44        | 1.58            |
| Flux + Xsec constrained                   | 2.88 | 2.68        | 3.02     | 2.86        | 3.82         | 2.31            |
| Binding energy                            | 2.43 | 1.73        | 7.26     | 3.66        | 3.01         | 3.74            |
| $\sigma(\nu_e)/\sigma(\bar{\nu}_e)$       | 0.00 | 0.00        | 2.63     | 1.46        | 2.62         | 3.03            |
| $NC1\gamma$                               | 0.00 | 0.00        | 1.07     | 2.58        | 0.33         | 1.49            |
| NC Other                                  | 0.25 | 0.25        | 0.14     | 0.33        | 0.99         | 0.18            |
| Osc                                       | 0.03 | 0.03        | 3.86     | 3.60        | 3.77         | 0.79            |
| All Systematics                           | 4.91 | 4.28        | 8.81     | 7.03        | 18.32        | 5.87            |
| All with osc                              | 4.91 | 4.28        | 9.60     | 7.87        | 18.65        | 5.93            |