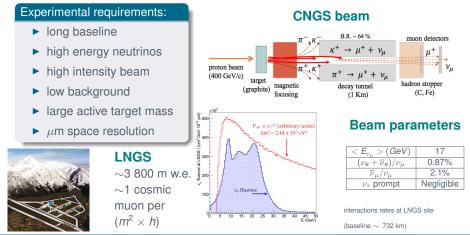
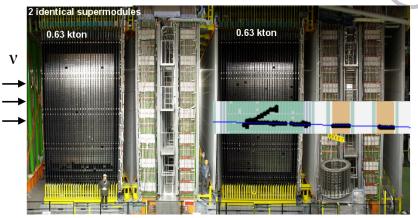
IV International Conference on Particle Physics and Astrophysics

New results from the OPERA experiment in the CNGS neutrino beam

Svetlana Vasina on behalf of the OPERA Collaboration vasina@jinr.ru, JINR, Dubna, Russia

22-26 October 2018, Moscow, Russia


The OPERA experiment performed first detection of ν_{τ} in pure ν_{μ} beam playing a unique role to prove the neutrino oscillation mechanism in **appearance** mode.


Experimental requirements:

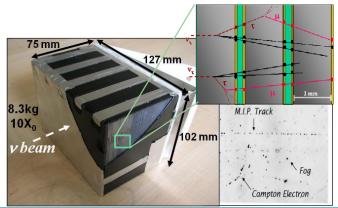
- Iong baseline
- high energy neutrinos
- high intensity beam
- Iow background
- large active target mass
- µm space resolution

OPERA 1

The OPERA experiment performed first detection of ν_{τ} in pure ν_{μ} beam playing a unique role to prove the neutrino oscillation mechanism in **appearance** mode.

Target and Target Tracker $(6.7m \times 6.7m)$ ($8m \times 10m$) ~ 75000 bricks

Target and Target Tracker $(6.7m \times 6.7m)$ ~ 75000 bricks

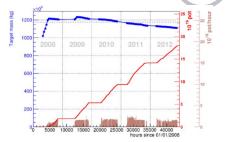

Brick Manipulator System

OPERA

OPERA 3

Emulsion Cloud Chamber technique provides large target mass and high spatial resolution:

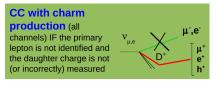
- $\blacktriangleright~\sim\!150$ 000 ECC, 56 lead plates and 57 emulsions each
- \blacktriangleright ~ 9 million films in total (sensitivity 30 grains per 100 μ m)
- \blacktriangleright ~ 1.25 kton total target mass

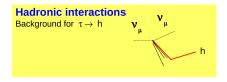


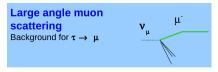
Collected data sample

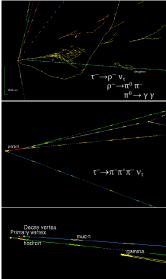
2008-2012 CNGS run

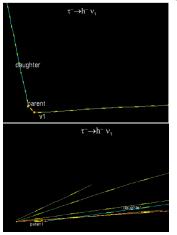
- ▶ 17.97 × 10¹⁹ p.o.t.
- 1.18 kt average detector mass
- 19505 on-time interactions in detector
- 6785 decay searched events




Year	Beam days	P.O.T. (10 ¹⁹)	ν interactions	
2008	123	1.74	1931	
2009	155	3.53	4005	
2010	187	4.09	4515	
2011	243	4.75	5131	
2012	257	3.86	3923	
Total	965	17.97	19505	


 $\nu_{\mu} \rightarrow \nu_{\tau}$ analysis


MC tuned on CHORUS data, validated with measured OPERA charm events Reduced by "track following down" procedure and large angle scanning Eur. Phys. J C74 (2014) 2986


FLUKA simulation and test beam data Reduced by nuclear fragment search and large angle scattering PTEP 9 (2014) 093C01

Estimate by implementing a proper form factor for Lead Simulation bench-marked on experimental data IEEE Transactions on Nucl. Sci. Vol. 62, 5, 2015

 $\overline{
u}_{\mu}
ightarrow \overline{
u}_{ au}$ analysis

5 ν_{τ} candidates

Phys. Lett. B 691 (2010) 183 JHEP 11 (2013) 036 Phys. Rev. D 89 (2014) 051102 PTEP (2014) 10, 101C01

PRL 115 (2015) 12, 121802

 $\nu_{\mu} \rightarrow \nu_{\tau}$ analysis

PRL 115, 121802 (2015)

PHYSICAL REVIEW LETTERS

week ending 18 SEPTEMBER 2015

Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

		Expected				
Channel	Charm	Had. reinterac.	Large μ scat.	Total	Expected signal	Observed
$\tau \rightarrow 1h$	0.017 ± 0.003	0.022 ± 0.006		0.04 ± 0.01	0.52 ± 0.10	3
$\tau \rightarrow 3h$	0.17 ± 0.03	0.003 ± 0.001		0.17 ± 0.03	0.73 ± 0.14	1
$\tau \rightarrow \mu$	0.004 ± 0.001		0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \rightarrow e$	0.03 ± 0.01			0.03 ± 0.01	0.78 ± 0.16	0
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5

- probability of the background fluctuation 1.1 × 10⁻⁷
- absence of the signal excluded with a significance of 5.1 σ

Scientific Background on the Nobel Prize in Physics 2015

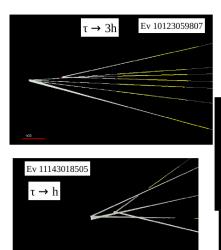
NEUTRINO OSCILLATIONS

compiled by the Class for Physics of the Royal Swedish Academy of Sciences

Super-Kennikanda's oscillation results were later confirmed by the detectors MACRO [55] and Soudan [56] hourghowstien accelerator experiments KACR [57] mAIDOS [88] and T2K [59] and more recently also by the large neutrino telescopes ANTARES [60] mal lecXuber [61] Appendice of sumeritarios in a mono-metiniza bream has then demonstrated on an enderstand on the strength of the strength of the strength of the strength of the CHRN [61] appendice of the strength of the CHRN [61] appendice of the strength of the CHRN [62] and the strength of t

 $u_{\mu} \rightarrow \nu_{\tau} \text{ analysis}$

Data sample re-analysis:

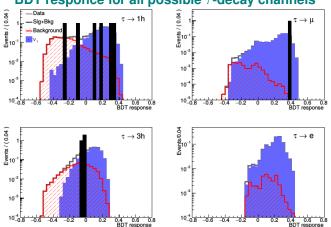

- Minimum bias kinematical cuts
- Multivariate analysis: Boosted Decision Tree


Variable	$\tau \rightarrow 1h$		au ightarrow 3h		$\tau \rightarrow \mu$		$\tau ightarrow e$	
variable	OLD	NEW	OLD	NEW	OLD	NEW	OLD	NEW
$z_{dec} \ (\mu m)$	[44, 2600]	$<\!\!2600$	<2600		[44, 2600]	$<\!\!2600$	<2600	
$ heta_{kink} \ (rad)$	> 0.02		< 0.5	> 0.02	>0.02		> 0.02	
$p_{2ry} \ (GeV/c)$	>2	>1	>3	>1	[1, 15]		[1, 15]	>1
$p_{2ry}^T \ (GeV/c)$	> 0.6(0.3)	> 0.15	/		>0.25	>0.1	>	0.1
$p_{miss}^T \; (GeV/c)$	< 1	/	< 1	/	/		,	/
$\phi_{lH}~(rad)$	$>\pi/2$	/	$>\pi/2$	1	/		1	
$m, m_{min} \ (GeV/c^2)$	/		[0.5, 2]	/	/		,	/

Channel		ν_{τ} Exp.	Observed			
	Charm	Had. re-interaction	Large μ -scat.	Total		
$\tau \to 1h$	0.15 ± 0.03	1.28 ± 0.38	_	1.43 ± 0.39	2.96 ± 0.59	6
$\tau \rightarrow 3h$	0.44 ± 0.09	0.09 ± 0.03	_	0.52 ± 0.09	1.83 ± 0.37	3
$\tau ightarrow \mu$	0.008 ± 0.002	-	0.016 ± 0.008	0.024 ± 0.008	1.15 ± 0.23	1
$\tau \to e$	0.035 ± 0.007	-	_	0.035 ± 0.007	0.84 ± 0.17	0
Total	0.63 ± 0.10	1.37 ± 0.38	0.016 ± 0.008	2.0 ± 0.4	6.8 ± 0.75	10

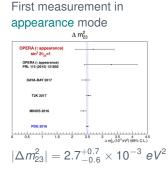
 $u_{\mu}
ightarrow
u_{ au}$ analysis

5 more ν_{τ} candidates



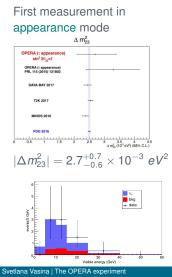
OPERA

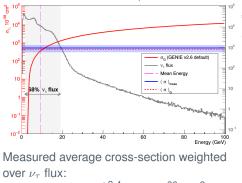
 $\overline{
u_{\mu}}
ightarrow \overline{
u_{ au}}$ analysis


BDT responce for all possible τ -decay channels

Likelihood based analysis: No oscillation hypothesis excluded at 6.1 σ (P-value = 4 × 10⁻¹⁰)

 $\overline{
u_{\mu}}
ightarrow \overline{
u_{ au}}$ analysis

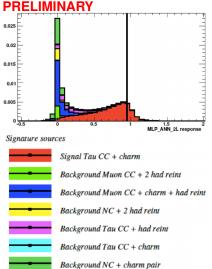

Δm^2_{23} and cross section measurement


 $\nu_{\mu} \rightarrow \nu_{\tau}$ analysis

Δm^2_{23} and cross section measurement

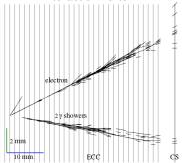
First measurement with negligible contamination from anti- ν_{τ}

 $<\sigma>_{meas}=(5.1^{+2.4}_{-2.0})\times 10^{-36} \ cm^2$ $<\sigma>_{meas}=(1.2^{+0.6}_{-0.5})<\sigma_G>$

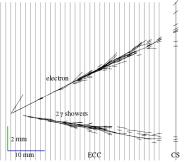

PRL 120, 211801 (2018)

 $\nu_{\mu} \rightarrow \nu_{\tau}$ analysis

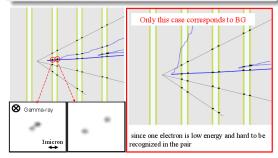
Among the 5 new u_{τ} candidates: an event with 3 verteces


Classified as ν_{τ} interaction with charm production (first event even observed) BG hypothesis rejected at 3.4 σ C.L. Ev 11143018505 $\tau \rightarrow$ h Z W^+ p, n(a) p, n(b) h

 $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ analysis


 u_e candidates identification is based on the detection of the electromagnetic shower associated with the primary interaction vertex

 $\nu_{\mu} \rightarrow \nu_{e}$ analysis



 u_e candidates identification is based on the detection of the electromagnetic shower associated with the primary interaction vertex

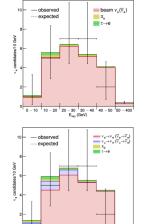
Background sources:

- $\pi^0 \rightarrow \gamma \rightarrow e^+ + e^-$ in ν_μ interaction without a reconstructed μ
- ν_{τ} CC with the decay of $\tau \rightarrow e$
- intrinsic $\nu_e(\bar{\nu}_e)$ beam components

 $\nu_{\mu} \rightarrow \overline{\nu_{e}}$ analysis

No oscillation scenario

- ▶ v_e beam contamination 30.7 ± 0.9(*stat.*) ± 3.1(*syst.*)
- ► other background 1.2 ± 0.5(*stat*.) ± 0.2(*syst*.)

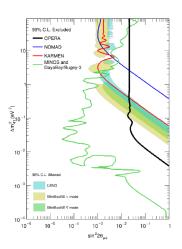

3-flavour oscillation scenario

► 34.3 ± 1.0(*stat*.) ± 3.4(*syst*.) (including BG)

2008-2012 data (17.97 × 10¹⁹ p.o.t.)

35 v_e candidates found

Result:
$$sin^2(2\theta_{13}) < 0.43$$
 (90% C.L.)


JHEP06(2018)151

 $\nu_{\mu} \rightarrow \nu_{e}$ analysis

Sterile neutrino search

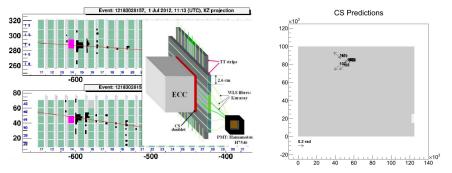
3+1 model bounds from ν_e appearance with profile Likelihood method ~standard oscillation Exotic oscillation $P_{\nu_{\mu} \rightarrow \nu_{e}} C^{2} \sin^{2} \Delta_{31} \rightarrow \sin^{2} 2\theta_{\mu e} \sin^{2} \Delta_{41}$ \uparrow 0.5 C sin $2\theta_{\mu e}$ cos $\phi_{\mu e}$ sin $2\Delta_{31}$ sin $2\Delta_{41}$ + $C \sin 2\theta_{\mu e} \sin \phi_{\mu e} \sin 2\Delta_{31} \sin^2 \Delta_{41}$ $\Delta_{ij} = \frac{1.27 \Delta m_{ij}^2 L}{F}$ $\phi_{\mu e} = Arg(U_{\mu 3}U_{e3}^{*}U_{\mu 4}U_{e4}^{*})$ $sin^{2}2\theta_{\mu e} = 4|U_{\mu 4}|^{2}|U_{e4}|^{2}$ $-2\ln L = -2\sum_{i=1}^{N} \left(n_{i}\ln\mu_{i} - N\mu_{i}\right) + \sum_{i=1}^{2} \frac{k_{j}^{2}}{\sigma_{i}^{2}} + \frac{\left(\Delta m_{31}^{2} - \widehat{\Delta m_{31}^{2}}\right)^{2}}{\sigma_{\lambda \dots 2}^{2}}$

JHEP06(2018)151 (arXiv 1803.11400)

Summary

- Full data set analysis is completed (17.97 × 10¹⁹ p.o.t.)
- $\nu_{\mu} \rightarrow \nu_{\tau}$ analysis
 - 10 ν_{τ} candidates with 2.0 \pm 0.4 expected background events
 - No oscillation hypothesis excluded at 6.1 σ using a multi-variate analysis technique
 - First ν_{τ} cross section measurement with negligible anti- ν_{τ} contamination
 - ν_{τ} neutrino interaction with charm production observed
- $\nu_{\mu} \rightarrow \nu_{e}$ analysis
 - Number of observed candidates is in agreement with the expected background and the standard oscillation signal
 - Constraint on sterile neutrinos in the 3+1 flavour model
- The data is at CERN OPEN Data Portal (first non-LHC experiment to make it's data open)
- Non-oscillation physics: hadron multiplicities, cosmic rays modulation
- Combined oscillation analysis in progress...

Thank you for attention!

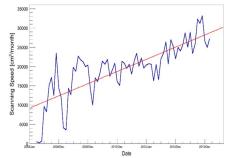


OPERA

Backup slides

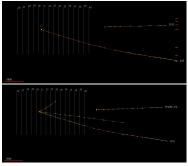
Event location procedure

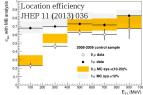
OPER A


- TT data is used for a prediction of the bricks which contain the neutrino interactions
- A large area of the corresponding changeable film is scanned (so far 2'500'000 cm² of CS surface analysed)

OPERA 20

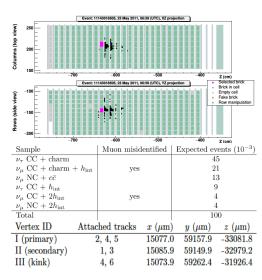
Scanning of Changeable Sheets: two large facilities

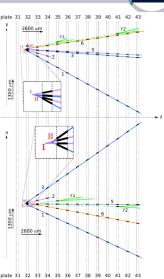



Scanning speed per facility: improvement during the run

LNGS: 10 microscopes, 200 cm²/h
 Nagoya: 5 S-UTS, 220 cm²/h

Event location procedure

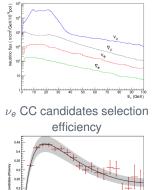

- brick exposure at the surface laboratory to collect cosmic-rays for alignment
- scan-back: CS-tracks are followed upstream from film to film to find the ν-interaction vertex
- total-scan: scanning of the 1 cm² around the vertex in 15 plates is performed
- scan-forth: improvement of the momentum measurement of the reaction products New J. of Phys. 4 (2012) 013026
- decay search Eur.Phys.J. C74(2014) 2986

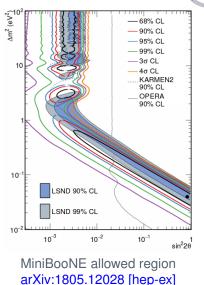

Decay search procedure

- Primary vertex definition
 - visual inspection of segments on the vertex plate
 - impact parameter $< 10(5 + 0.01\Delta z)\mu m$, if $\Delta z < 500\mu m$
- Extra-track search
 - selection of tracks reconstructed in the volume but not attached to primary vertex
 - ► identification of e⁺e⁻ pairs by visual inspection
- In-track search
 - search for small kinks along the tracks attached to the primary vertex
- Parent search
 - search for a track connecting the selected extra-track and the primary vertex

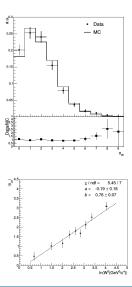
(more details: arXiv:1404.4357 [hep-ex])

3 vertex event




 $\overline{
u_{\mu}} \rightarrow \overline{
u_{e}}$ analysis

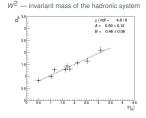
Neutrino fluxes at Gran Sasso JHEP 1307 (2013) 004

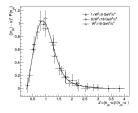


E, (GeV)

0.15

Study of charged particles multiplicity distribution in Pb

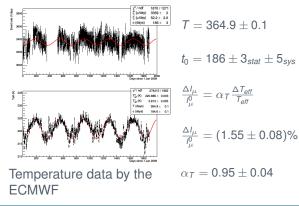

The study is aimed in tuning the models used in MC generators. Eur.Phys.J. C78 (2018) 1, 62

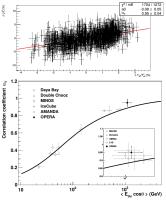

- Linear dependence $< n_{ch} >= a + b \cdot lnW^2$
- Linear dependence

$$< D_{ch} >= A + B \cdot < n_{ch} >$$

 Aproximate KNO (Koba, Nielsen, Olesen) scaling is valid for the charged hadrons multiplicity

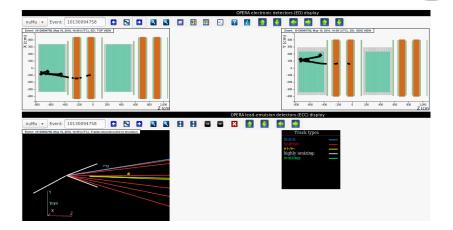
< n_{ch} > — the average multiplicity < D_{ch} > — dispersion of < n_{ch} >




Annual modulations of atmospheric muons

Gran Sasso underground ~3 800 m w.e. \rightarrow Minimum muon energy ~1.8 TeV Atmospheric temperature increase \rightarrow density decrease \rightarrow the pions

and kaons decay rate increase \rightarrow muon rate increase


 $I_{\mu}(t) = I_{\mu}^{0} + \Delta I_{\mu} = I_{\mu}^{0} + \delta I_{\mu} cos[\frac{2\pi}{T}(t - t_{0})]$ PRELIMINARY

OPER 4

CERN Open Data Portal

OPERA

http://opendata.cern.ch/visualise/events/opera http://opendata.cern.ch/docs/opera-news-first-release-2018