

Search for neutrinoless double beta decay with the KamLAND-Zen experiment

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Dmitry CHERNYAK

💏 тне U

THE UNIVERSITY OF TOKYO

On Behalf of the KamLAND-Zen Collaboration

Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Japan

IV International Conference on Particle Physics and Astrophysics, Moscow, 22-26 October 2018

Double beta decay

S.Dell'Oro et al., Adv. in High En. Phys. (2016) 2162659

Two-neutrino double beta decay ($2v2\beta$) $(A, Z) \to (A, Z + 2) + 2e^{-} + 2\bar{\nu}_{e}$ 2**β**⁻: ΔL=0 Allowed by the Standard Model, was observed for 11 isotopes Neutrinoless double beta decay $(0v2\beta)$ $2\beta^{-}: (A, Z) \to (A, Z + 2) + 2e^{-}$ $\Lambda I = 2$ Process without emission of neutrino or antineutrino Forbidden by the Standard Model, is not observed

Observation of $0v2\beta$:

- prove the lepton number violation
- establish the Majorana nature of the neutrino
- help to determine neutrino mass hierarchy and estimate the effective Majorana mass of neutrino
- help to test leptogenesis

KamLAND-Zen Collaboration

~ 50 collaborators, 12 institutes, 3 countries

Tohoku University

S. Abe, A. Gando, Y. Gando, T. Hachiya, S. Hayashida, K. Hosokawa, S. leki, H. Ikeda, K. Inoue, K. Ishidoshiro, Y. Kamei, N. Kawada, T. Kinoshita, M. Koga, T. Mitsui, H. Miyake, K. Nakamura, S. Obara, A. Ohno, N. Ohta, S. Ohtsuka, H. Ozaki, T. Sato, I. Shimizu, Y. Shirahata, J. Shirai, A. Suzuki, A. Takeuchi, K. Tamae, K. Ueshima, Y. Wada, H. Watanabe

Kavli IPMU

A. Kozlov, D. Chernyak

Osaka University

Y. Takemoto, S. Umehara, S. Yoshida

Tokushima University

K. Fushimi, S. Hirata, K. Hata

UC Berkeley & LBNL B. Berger, B. Fujikawa

L. Winslow, J. Ouellet, S. Fraker

University of Tennessee Yu. Efremenko

TUNL

H. Karwowski, D. Markoff, W. Tornow

University of Hawaii

University of Washington

J. Maricic, K. Choi

J. Detwiler, S. Enomoto

KamLAND-Zen 400 detector

Detector is located in Kamioka underground laboratory at the depth of 2700 m.w.e., and exploits the KamLAND radio-purity, light sensors (PMTs) and data acquisition system.

- Enriched Xe (≈91% of ¹³⁶Xe):
 - Phase I (2011–2012): 320kg
 - Phase II (2013-2015): 383kg
- Nylon mini-balloon: 25µm-thick, R=1.54m, V=16.5m³, ²³⁸U, ²³²Th ~ a few × 10⁻¹¹ g/g
- Liquid scintillator: C₁₀H₂₂(81.8%) + PC(18%) + PPO(2.7g/l) + Xe(≈2.5wt%)
- FWHM @ Q_{2β}:
 - Phase I: ≈9.9%
 - Phase II: ≈11%
- Target $\langle m_{2\beta} \rangle$: 60 meV/2 years

KamLAND-Zen 400: 2v2β result

[2] A. Gando et al., Phys. Rev. Lett. 117 (2016) 082503

KamLAND-Zen 400: 0v2β search

A. Gando et al., Phys. Rev. Lett. 117 (2016) 082503

Preparation of KamLAND-Zen 800

Toward cleaner mini-balloon

Clean wear control

- Check particle generation by our hands, suits, etc.
- Particle flow on/near desks

Zen 400: Hand-welding by a professional from a company Zen 800: Semi-automatic welding by scientists with speed up & less particle drop

Mini-balloon production

Washing nylon film

Packing

Folding

Mini-balloon installation

Delivery to Kamioka

Mini-balloon parts assembling

Mini-balloon installation into KamLAND

 \leftarrow Inner view of KamLAND detector

Current status of KamLAND-Zen 800

- Mini-balloon was successfully installed this May
- Filled with Dummy LS
- LS purification is currently in progress
- We will start the preparation of Xe-LS in November
- KamLAND-Zen 800 will start this winter

KamLAND2-Zen: Future prospects

Enriched xenon mass ≥ 1000kg

KamLAND-Zen weak point: Energy resolution

We need to detect **more light** to improve energy resolution \rightarrow reduce the 2v2 β tail background Target sensitivity: $\langle m_v \rangle \sim 20$ meV

Gain in number of detected photons

(after upgrade to KamLAND2-Zen) Lab scintillator: 1.4 times High QE PMTs: 1.9 times Light collecting cones: 1.8 times

Winston cone

Dead layer free scintillation film balloon

Conclusions

- KamLAND-Zen 400 was successfully completed. We obtained the world's best limit for 0v2 β decay of ¹³⁶Xe: $T_{1/2}^{0\nu} > 1.07 \times 10^{26}$ yr at 90% C.L. which corresponds to $\langle m_{\nu} \rangle < (61-165)$ meV depending on NME. We also measured 2v2 β decay of ¹³⁶Xe: $T_{1/2}^{2\nu} = (2.21 \pm 0.02(\text{stat}) \pm 0.07(\text{syst})) \times 10^{21}$ yr which is in accordance with EXO-200 results
- KamLAND-Zen 800 is expected to enter the IH mass region with the sensitivity of $\langle m_{v} \rangle \sim 40$ meV. New mini-balloon (twice larger in volume) was successfully installed this spring. LS purification is almost finished and preparation of the Xe-LS will start in few weeks. KamLAND-Zen 800 will start this winter
- KamLAND2-Zen is a next-generation project to cover most of the IH mass region. Several R&D are in progress to reach the sensitivity of $\langle m_{v} \rangle \sim 20$ meV

Choice of 2β decay isotope

¹³⁶Xe was chosen for KamLAND-Zen thanks to:

- Large Q_{2B} > 2 MeV
- Slow 2v2β decay
- Isotopic enrichment and commercial availability
- Solubility in liquid scintillator, established purification, easy extraction

lsotope	Q _{2β} (MeV)	Natural abund. (%)	Enrichable by centrifugation
⁴⁸ Ca	4.272	0.187	No
⁷⁶ Ge	2.039	7.8	Yes
⁸² Se	2.995	9.2	Yes
⁹⁶ Zr	3.350	2.8	No
¹⁰⁰ Mo	3.034	9.6	Yes
¹¹⁶ Cd	2.814	7.5	Yes
¹³⁰ Te	2.527	33.8	Yes
¹³⁶ Xe	2.458	8.9	Yes
¹⁵⁰ Nd	3.371	5.6	No (?)

