The background simulation of experiment for searching of 2K-capture in ^{124}Xe

Yu. Gavriljuk, A. Gangapshev, V. Kazalov, V. Kuzminov, D. Tekueva, S.P. Yakimenko
Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

S. Panasenko, O. Petrenko, S. Ratkevich
Karazin Kharkiv National University, Kharkiv, Ukraine
Candidates for measurement of $2\nu2\beta^+$-decay

<table>
<thead>
<tr>
<th>Transition</th>
<th>E_{2K},MeV</th>
<th>Isotopic abundance, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{78}\text{Kr}\rightarrow^{78}\text{Se}$</td>
<td>2.867</td>
<td>0.35</td>
</tr>
<tr>
<td>$^{96}\text{Ru}\rightarrow^{96}\text{Mo}$</td>
<td>2.724</td>
<td>5.52</td>
</tr>
<tr>
<td>$^{106}\text{Cd}\rightarrow^{106}\text{Pd}$</td>
<td>2.771</td>
<td>1.25</td>
</tr>
<tr>
<td>$^{124}\text{Xe}\rightarrow^{124}\text{Te}$</td>
<td>2.866</td>
<td>0.10</td>
</tr>
<tr>
<td>$^{130}\text{Ba}\rightarrow^{130}\text{Xe}$</td>
<td>2.610</td>
<td>0.11</td>
</tr>
<tr>
<td>$^{136}\text{Ce}\rightarrow^{136}\text{Ba}$</td>
<td>2.401</td>
<td>0.20</td>
</tr>
</tbody>
</table>

$(Z, A)\rightarrow(Z-2, A) + 2\beta^+ (+ 2\nu_e), \quad e_b + (Z, A)\rightarrow(Z-2, A) + \beta^+ (+ 2\nu_e), \quad e_b + e + (Z, A)\rightarrow(Z-2, A) + 2\nu_e + 2X, \quad e_b + e_b + (Z, A)\rightarrow(Z-2, A)^*\rightarrow(Z-2, A) + \gamma + 2X.$
\[
\begin{align*}
\text{Te*} & \quad \text{Te*} \\
\begin{array}{c|c|c}
\text{e}_a & \text{e}_a & 0.142^2 = 0.020 \\
\text{e}_a & \text{K} & 0.246 \\
\text{K} & \text{e}_a & 0.857^2 = 0.734
\end{array}
\end{align*}
\]

\[\text{Te}^{*\ast\ast} \rightarrow \text{Te}^{*\ast} + \text{Te}^{\ast}\]

\begin{align*}
K_{ab} &= 31.8 \text{ keV} \\
E_{2k} &= 64.46 \text{ keV} \\
\omega_k &= 0.857 - \text{characteristic quantum} \\
\omega_e &= 0.142 - \text{Auger electron}
\end{align*}

The energies of characteristic photons and an Auger-electron in 2K-capture are determined under the assumption that the filling of the double vacancy of K-shell in one atom is identical to filling two K-shell vacancies, each in a separate atom; the total energy release being 64.46 keV.

The probability of the emission of two characteristic X-ray photons and auger electron equal to 73.4%.

\[
\begin{align*}
K_{\alpha 1} &= 27.47 \text{ keV} \quad 52.2\% \\
K_{\alpha 2} &= 27.20 \text{ keV} \quad 27.7\% \\
K_{\beta 1} &= 30.99 \text{ keV} \quad 16.2\% \\
K_{\beta 2} &= 31.70 \text{ keV} \quad 3.9\%
\end{align*}
\]
Schematic view of Proportional Counter

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Material</td>
<td>Cu</td>
</tr>
<tr>
<td>2. Total length, mm</td>
<td>1160</td>
</tr>
<tr>
<td>3. Fiducial length, mm</td>
<td>595</td>
</tr>
<tr>
<td>4. Outer diameter, mm</td>
<td>150</td>
</tr>
<tr>
<td>5. Inner diameter, mm</td>
<td>137</td>
</tr>
<tr>
<td>6. Anode wire diameter, mm</td>
<td>0.010</td>
</tr>
<tr>
<td>7. Total volume, l</td>
<td>10.37</td>
</tr>
<tr>
<td>8. Fiducial volume, l</td>
<td>8.77</td>
</tr>
<tr>
<td>9. Pressure, at</td>
<td>5</td>
</tr>
<tr>
<td>10. Capacity, pF</td>
<td>31</td>
</tr>
<tr>
<td>11. Anode resistance, Ohm</td>
<td>613</td>
</tr>
</tbody>
</table>
Location of the experimental setup

- 18 cm – copper (M1)
- 15 cm – lead
- 8 cm – borated polyethylene
- depth-4900 m.w.e., $\phi_\mu = 2.23 \times 10^{-9}$ cm$^{-2}$s$^{-1}$
The spectrum of the Cd-109 calibration source, 88 keV gamma-line

Black – All events
Blue - one point events
Green – two point events
Red – three point events
The distribution of events versus parameter β:

Black – All events
Blue – one point events
Green – two point events
Red – three point events

Blue spectrum – distribution for background events
Red spectrum – distribution for calibration source Cd109 (88 keV)

10-21-32
Am
Am
Am

fit ~ 150 μs
afterpulse

\[
\begin{align*}
\{ A_1 \} & \Rightarrow \{ m_0 \} \\
\{ A_2 \} & \Rightarrow \{ m_1 \} \\
\{ A_3 \} & \Rightarrow \{ m_2 \}
\end{align*}
\]

1,2,3,4,5,6,7 run

\[\Delta T = 150 \text{ h} \]

(3.2 < \(\tau_{\text{pulse rise}} \) < 12) μs

10-26 October 2018, MEPhi, Moscow
Measurement results for 15427 hours

Search area of $2\kappa(2\nu)$-capture of Xe-124 from $64.46-13=51.46(52)$ to $64.46+13=77.46$

$8 < \lambda < 12$

$m_1/m_2 \geq 0.7$

$5\text{keV} \leq m_0 \leq 13\text{keV}$
Geant4 model of low-background shield

1 - Borated polyethylene
2 - Lead
3 - Copper
Cian – Copper
Red – Prop Counter
Blue – Full gas volume
Green – Fiducial volume

Geant4-10.4.2
G4DecayPhysics
G4RadioactiveDecayPhysics
G4EmPenelopePhysics
G4EmLivermorePhysics (for test)
G4HadronPhysicsQGSP_BIC_HP
Test of Geant4 model

Black – All events
Blue - one point events
Green – two point events
Red – three point events
Comparison of background and simulation

Red – Sum of 1, 2 and 3 (.)-events
Black – Geant4 result
Blue – 1(.)-events
Green – 2(.)-events
Purple – 3(.)-events

\[3.2 < \tau_{\text{rise pulse}} < 12]\mu s

46.5 keV

\[8 < \lambda < 12\]

\[m_1/m_2 \geq 0.7\]

5keV \leq m_0 \leq 13keV

Search area of 2K(2\nu)-capture of Xe-124 from 64.46-13= 51.46(52) to 64.46+13=77.46

\[t_{\text{meas}}=15427\ \text{hour}\]
The calculation of 125I isotope background events

The 125I is produced from 125Xe and 125mXe created by thermal neutron capture on 124Xe with a total cross section of 165±11 barn. 125I decays by 100% capture via an excited state of 125Te into the ground state of 125Te.

We have several measurements of neutrons in our laboratory.

1) Some features and results of thermal neutron background measurements with the [ZnS(Ag)+6LiF] scintillation detector (NIM A 841 (2017), 156–161, http://dx.doi.org/10.1016/j.nima.2016.10.038)

<table>
<thead>
<tr>
<th>Eγ (keV)</th>
<th>Iγ (%)</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,4919</td>
<td>6.68</td>
<td>ε</td>
</tr>
</tbody>
</table>

Neutron flux with energies < 0.5 eV estimated to be (2.6±0.4)*10^{-5} cm^{-2} s^{-1}

Calculating the number of neutrons from the G4 simulation: 0 neutrons/year

<table>
<thead>
<tr>
<th>E (keV)</th>
<th>I (%)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.335</td>
<td>0.233</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>3.606</td>
<td>0.112</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>3.759</td>
<td>0.637</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>3.769</td>
<td>5.66</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>4.020</td>
<td>3.54</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>4.069</td>
<td>0.429</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>4.121</td>
<td>0.70</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>4.173</td>
<td>0.043</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>4.302</td>
<td>1.01</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>4.572</td>
<td>0.455</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>4.829</td>
<td>0.103</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>4.829</td>
<td>0.165</td>
<td>Te L_{\gamma}</td>
</tr>
<tr>
<td>26.875</td>
<td>0.032</td>
<td>Te K_{\gamma}</td>
</tr>
<tr>
<td>27.202</td>
<td>4.612</td>
<td>Te K_{\gamma}</td>
</tr>
<tr>
<td>27.472</td>
<td>5.758</td>
<td>Te K_{\gamma}</td>
</tr>
<tr>
<td>30.944</td>
<td>6.83</td>
<td>Te K_{\gamma}</td>
</tr>
<tr>
<td>30.995</td>
<td>13.24</td>
<td>Te K_{\gamma}</td>
</tr>
<tr>
<td>31.237</td>
<td>0.121</td>
<td>Te K_{\gamma}</td>
</tr>
<tr>
<td>31.704</td>
<td>3.81</td>
<td>Te K_{\gamma}</td>
</tr>
<tr>
<td>31.774</td>
<td>0.58</td>
<td>Te K_{\gamma}</td>
</tr>
</tbody>
</table>

Neutron flux with energies above 700 keV estimated to be between 5.3*10^{-7} and 1.8*10^{-7} cm^{-2} s^{-1}

Calculating the number of thermal neutrons from the G4 simulation: 2.5 neutrons/year

0.0114 125I atoms per year in counter

http://nucleardata.nuclear.lu.se/toi
Comparison with other experimental results and theoretical predictions

<table>
<thead>
<tr>
<th>Experiment</th>
<th>2K capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>XENON 100 [1] (2017)</td>
<td>(\geq 6.5 \times 10^{20} \text{yr.})</td>
</tr>
<tr>
<td>XMASS-I [2] (2018)</td>
<td>(\geq 2.1 \times 10^{22} \text{yr.})</td>
</tr>
<tr>
<td>BNO INR RAS [3] (2017)</td>
<td>(\geq 7.7 \times 10^{21} \text{yr.})</td>
</tr>
</tbody>
</table>

Calculated half-lives for the 2\(\nu \) ECEC capture \(^{124}\text{Xe}\)

<table>
<thead>
<tr>
<th>2(\nu) ECEC ((10^{21})) yr.</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9-7.3</td>
<td>M. Hirsch et al., Z. Phys. A 1999</td>
</tr>
<tr>
<td>0.4-8.8</td>
<td>J. Suhonen Journal of Physics G 2013</td>
</tr>
</tbody>
</table>

Thank You!
Backup
Candidates for 2K-capture events

\[\text{Amplitude (arb. units)} \]

- A1=30 keV
- A2=5 keV
- A3=25 keV

\[\tau_p \]

\[t, \mu s \]

- A1=24 keV
- A2=32 keV
- A3=5 keV

\[\text{Amplitude (arb. units)} \]

- A1=31 keV
- A2=29 keV
- A3=6 keV

\[\tau_p \]

\[t, \mu s \]

- A1=9 keV
- A2=27 keV
- A3=31 keV

22-26 October 2018, MEPhI, Moscow
\[T_{1/2} \geq \ln 2 \times N \times t_{\text{meas}} \left(\eta / n_{\text{exp}} \right) \]

\[N = 2.85 \times 10^{23} \text{ - the number of } ^{124}\text{Xe atoms} \]

\[\eta = \omega^{2K} \cdot \varepsilon_p \cdot \varepsilon_3 \cdot \alpha_k \cdot k_\lambda \text{ – the full efficiency of registration} \]

\[\omega^{2K} = 0.772 \text{ - fluorescence yield for } 2K \text{ capture} \]

\[\varepsilon_p = 0.809 \text{ - the probability of absorption of three-point event} \]

\[\varepsilon_3 = 0.51 \pm 0.05 \text{ - the efficiency of three-point event identification} \]

\[\alpha_k = 0.985 \pm 0.005 \text{ - the coefficient of detection of } 2K\text{-photons and Auger elections as three-point events} \]

\[K_\lambda = 0.89 \pm 0.01 \text{ - the efficiency of } \lambda\text{-selection} \]

\[n_{\text{exp}} = 7^{+5.5}_{-3.4} \]

\[t_{\text{meas}} = 1.76 \text{ year} \]

\[T_{1/2} \geq 7.7 \times 10^{21} \text{ yr. (90\% C.L.)} \]
Fig. 4. Energy spectra for the \(\beta\)-depleted samples (top), \(\beta\)-enriched samples (middle), and \(^{214}\text{Bi}\) samples (bottom). The observed data spectra (points) are overlaid with the best-fit \(2\nu2K\) signal and background spectra (colored stacked histograms). Colored histograms are the \(2\nu2K\) signal (red filled), \(^{125}\text{I}\) (green hatched), \(^{131}\text{mXe}\) (red hatched), \(^{133}\text{Xe}\) (blue hatched), \(^{14}\text{C}\) (orange filled), \(^{39}\text{Ar}\) (magenta filled), \(^{85}\text{Kr}\) (blue filled), \(^{214}\text{Pb}\) (cyan filled), \(^{214}\text{Bi}\) (green filled), \(^{136}\text{Xe}\) \(2\nu\beta\beta\) (brown filled), and external backgrounds (gray filled).