Recoil force	Angular distribution	Force measurement	Applications	Summary
Neutri	no recoil force in e	lectron-capture o	lecay of polariz	ed
1 C C C C C C C C C C C C C C C C C C C		and the second	and the second	

nuclei: measurement prospects and potential applications

A. L. Barabanov^{1,2}, O. A. Titov¹ ¹ NRC "Kurchatov Institute" ² Moscow Institute of Physics and Technology

IV International Conference on Particle Physics and Astrophysics Moscow, Russia 22-26 October 2018

Angular distribution

Force measurement

Applications

Summary

Recoil force in electron capture

Electron capture

Nuclear recoil energy is small \Rightarrow all daughter atoms remain in the sample \Rightarrow recoil force acts on the sample:

$$\mathsf{F}_{\mathsf{recoil}} = - \langle \dot{\mathsf{P}}_{
u}
angle$$

Momentum carried away by neutrinos (per time unit) is

 $\dot{\mathbf{P}}_{\nu} = N \langle \dot{\mathbf{p}}_{\nu} \rangle$

Average momentum carried by one neutrino (per time unit) is

$$\langle \dot{\mathbf{p}}_{
u}
angle = p_{
u} \int d\Omega \cdot \mathbf{n}_{
u} \cdot rac{dw(\mathbf{n}_{
u})}{d\Omega}$$

 \Rightarrow if the angular distribution is anisotropic then $\textbf{F}_{recoil}\neq 0$ For weak interactions

$$rac{dw(heta)}{d\Omega} \propto (1+BP\cos heta)$$

2/9

Recoil force	Angular distribution	Force measurement	Applications	Summary
Motivation				

Recoil force in EC was first discussed in papers:

- C. DeAngelis, L. M. Folan, V. I. Tsifrinovich, Phys. Rev. C, **86**, 034615. (2012).
- L. M. Folan, V. I. Tsifrinovich, Mod. Phys. Lett. A, **29**, 1430042 (2014).

Key points:

- Estimates for recoil force
- Source measurement with micromechanical devices
- Applications: m_{ν} determination

Our work (see arXiv:1810.09896 for details)

- \bullet Evaluation of recoil force for allowed transitions, m_{ν} is taken into account
- Odified measurement scheme
- More applications: NME's, $P_x(x = K, L, ...)$, new physics, ...

Recoil force

Recoil force calculation

Neutrino angular distribution is given by

$$rac{d w_{EC}(heta)}{d \Omega} = rac{w_{EC}}{4 \pi} \left(1 + \eta B P \cos heta
ight), \qquad w_{EC} = \ln 2 / T_{1/2}$$

Asymmetry reduction due to neutrino mass:

$$\eta = \frac{c \sum_{x} p_{\nu x}^{2} |\psi_{x}(0)|^{2}}{\sum_{x} p_{\nu x} E_{\nu x} |\psi_{x}(0)|^{2}} \leq 1, \qquad \eta = 1 \text{ for } m_{\nu} = 0$$

Pure Gamow–Teller $(J_f = J_i \pm 1)$ $B = \begin{cases} \frac{J_i}{J_i+1}, & J_f = J_i + 1, \\ -1, & J_f = J_i - 1. \end{cases}$ Mixed Fermi & Gamow–Teller $(J_f = J_i)$

$$B = -rac{1+2\sqrt{J_i(J_i+1)}\,\xi}{(J_i+1)(1+\xi^2)}\,,\,\xi = rac{g_V\,M_F}{g_AM_{GT}}$$

Recoil force	Angular distribution	Force measurement	Applications	Summary
Recoil force	e calculation			

Nuclear polarization:

$$P\simeq rac{eta(J_i+1)}{3J_i}, \quad eta=rac{\mu B_0}{k_B T} (\ll 1)$$

Recoil force z-projection (for EC branching ratio I_{EC} and source activity α)

$$F_z = -\frac{NI_{EC}\ln 2\,p_\nu\eta BP}{3\,T_{1/2}} = -\frac{1}{3}\alpha I_{EC}p_\nu\eta BP$$

For massless neutrinos:

$$F_{z} = -\frac{NI_{EC} \ln 2 E_{\nu} BP}{3 c T_{1/2}} = -\frac{\alpha I_{EC} E_{\nu} BP}{3 c}$$

Typical values for our measurement scheme: $B_0 = 10$ T, $T \sim 1$ K, $\beta \sim 10^{-3}$, $P \sim 0.1\%$ $I_{EC} \geq 0.98$, $\alpha \sim 1$ MBq

Recoil force measurement

Idea by DeAngelis et al.

- Sample is attached to a cantilever
- Force is measured via z = F/k
- $F > 10^{-12} \text{ N}$

Problem: force is measurable only for optimistic experimental parameters

Our suggestion: use methods of magnetic resonance force microscopy

- Nuclear magnetic moments and recoil force oscillate with cantilever resonant frequency
- Sensitivity improves by $Q \leq 10^5$
- Smaller k
- $F > 10^{-19} \text{ N}$

$$F_{\min} = rac{\sqrt{2kk_BT}}{Q}$$

Recoil force	Angular distribution	Force measurement	Applications	Summary
Applications				

• Neutrino mass:

$$rac{F(m_
u
eq 0)}{F(m_
u = 0)} \simeq 1 - \left(rac{m_
u c^2}{Q_{EC}}
ight)^2$$

• BSM physics: can probe unique contributions to ν emission asymmetry (Lorentz violation etc.)

•
$$P_K, P_L, \ldots$$
:

$$\begin{cases}
P_K E_{\nu K} + P_L E_{\nu L} = E_{\nu}, \\
P_K + P_L = 1.
\end{cases}$$

• Fermi & Gamow–Teller mixing ratio $\xi = \frac{g_V M_F}{g_A M_{GT}}$

Recoil force	Angular distribution	Force measurement	Applications	Summary
Summary				

- There is a recoil force caused by neutrino emission in EC
- Formula for the force is obtained for allowed nuclear transitions
- The force can be measured using methods of MRFM
- Information about neutrino and weak interactions can be probed

Reco			

Angular distribution

Force measurement

Applications

Summary

Thank you!