Neutrino recoil force in electron-capture decay of polarized nuclei: measurement prospects and potential applications

A. L. Barabanov ${ }^{1,2}$, O. A. Titov ${ }^{1}$
${ }^{1}$ NRC "Kurchatov Institute"
${ }^{2}$ Moscow Institute of Physics and Technology

IV International Conference on Particle Physics and Astrophysics Moscow, Russia 22-26 October 2018

Recoil force in electron capture

Electron capture

Nuclear recoil energy is small \Rightarrow all daughter atoms remain in the sample \Rightarrow recoil force acts on the sample:

$$
\mathbf{F}_{\text {recoil }}=-\left\langle\dot{\mathbf{P}}_{\nu}\right\rangle
$$

Momentum carried away by neutrinos (per time unit) is

$$
\dot{\mathbf{P}}_{\nu}=N\left\langle\dot{\mathbf{p}}_{\nu}\right\rangle
$$

Average momentum carried by one neutrino (per time unit) is

$$
\left\langle\dot{\mathbf{p}}_{\nu}\right\rangle=p_{\nu} \int d \Omega \cdot \mathbf{n}_{\nu} \cdot \frac{d w\left(\mathbf{n}_{\nu}\right)}{d \Omega}
$$

\Rightarrow if the angular distribution is anisotropic then
$\mathbf{F}_{\text {recoil }} \neq 0$
For weak interactions

$$
\frac{d w(\theta)}{d \Omega} \propto(1+B P \cos \theta)
$$

Motivation

Recoil force in EC was first discussed in papers:

- C. DeAngelis, L. M. Folan, V. I. Tsifrinovich, Phys. Rev. C, 86, 034615. (2012).
- L. M. Folan, V. I. Tsifrinovich, Mod. Phys. Lett. A, 29, 1430042 (2014).

Key points:
(1) Estimates for recoil force
(3) Force measurement with micromechanical devices
(Applications: m_{ν} determination
Our work (see arXiv:1810.09896 for details)
(1) Evaluation of recoil force for allowed transitions, m_{ν} is taken into account
(3) Modified measurement scheme

- More applications: NME's, $P_{x}(x=K, L, \ldots)$, new physics, \ldots

Recoil force calculation

Neutrino angular distribution is given by

$$
\frac{d w_{E C}(\theta)}{d \Omega}=\frac{w_{E C}}{4 \pi}(1+\eta B P \cos \theta), \quad w_{E C}=\ln 2 / T_{1 / 2}
$$

Asymmetry reduction due to neutrino mass:

$$
\eta=\frac{c \sum_{x} p_{\nu x}^{2}\left|\psi_{x}(0)\right|^{2}}{\sum_{x} p_{\nu x} E_{\nu x}\left|\psi_{x}(0)\right|^{2}} \leq 1, \quad \eta=1 \text { for } m_{\nu}=0
$$

Pure Gamow-Teller $\left(J_{f}=J_{i} \pm 1\right)$

$$
B= \begin{cases}\frac{J_{i}}{J_{i}+1}, & J_{f}=J_{i}+1 \\ -1, & J_{f}=J_{i}-1 .\end{cases}
$$

Mixed Fermi \& Gamow-Teller $\left(J_{f}=J_{i}\right)$

$$
B=-\frac{1+2 \sqrt{J_{i}\left(J_{i}+1\right)} \xi}{\left(J_{i}+1\right)\left(1+\xi^{2}\right)}, \xi=\frac{g_{V} M_{F}}{g_{A} M_{G T}}
$$

Recoil force calculation

Nuclear polarization:

$$
P \simeq \frac{\beta\left(J_{i}+1\right)}{3 J_{i}}, \quad \beta=\frac{\mu B_{0}}{k_{B} T}(\ll 1)
$$

Recoil force z-projection (for EC branching ratio $I_{E C}$ and source activity α)

$$
F_{z}=-\frac{N I_{E C} \ln 2 p_{\nu} \eta B P}{3 T_{1 / 2}}=-\frac{1}{3} \alpha I_{E C} p_{\nu} \eta B P
$$

For massless neutrinos:

$$
F_{z}=-\frac{N I_{E C} \ln 2 E_{\nu} B P}{3 c T_{1 / 2}}=-\frac{\alpha I_{E C} E_{\nu} B P}{3 c}
$$

Typical values for our measurement scheme:
$B_{0}=10 \mathrm{~T}, T \sim 1 \mathrm{~K}, \beta \sim 10^{-3}, P \sim 0.1 \%$
$I_{E C} \geq 0.98, \alpha \sim 1 \mathrm{MBq}$

Recoil force measurement

Idea by DeAngelis et al.

- Sample is attached to a cantilever
- Force is measured via $z=F / k$
- $F>10^{-12} \mathrm{~N}$

Problem: force is measurable only for optimistic experimental parameters

Our suggestion: use methods of magnetic resonance force microscopy

- Nuclear magnetic moments and recoil force oscillate with cantilever resonant frequency
- Sensitivity improves by $Q \leq 10^{5}$
- Smaller k
- $F>10^{-19} \mathrm{~N}$

Applications

- Neutrino mass:

$$
\frac{F\left(m_{\nu} \neq 0\right)}{F\left(m_{\nu}=0\right)} \simeq 1-\left(\frac{m_{\nu} c^{2}}{Q_{E C}}\right)^{2}
$$

- BSM physics: can probe unique contributions to ν emission asymmetry (Lorentz violation etc.)
- P_{K}, P_{L}, \ldots :

$$
\left\{\begin{array}{l}
P_{K} E_{\nu K}+P_{L} E_{\nu L}=E_{\nu} \\
P_{K}+P_{L}=1
\end{array}\right.
$$

- Fermi \& Gamow-Teller mixing ratio $\xi=\frac{g_{V} M_{F}}{g_{A} M_{G T}}$

Summary

- There is a recoil force caused by neutrino emission in EC
- Formula for the force is obtained for allowed nuclear transitions
- The force can be measured using methods of MRFM
- Information about neutrino and weak interactions can be probed

Thank you!

