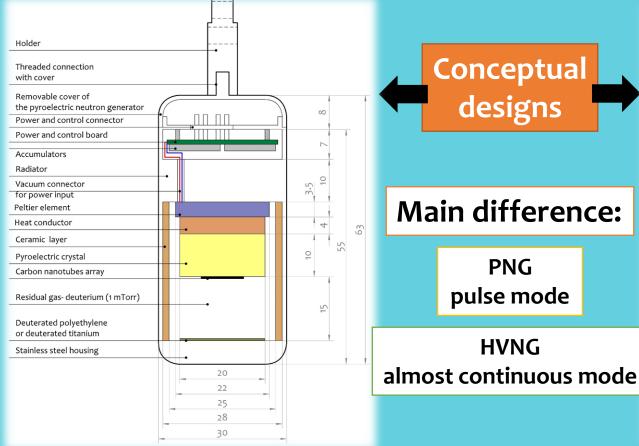
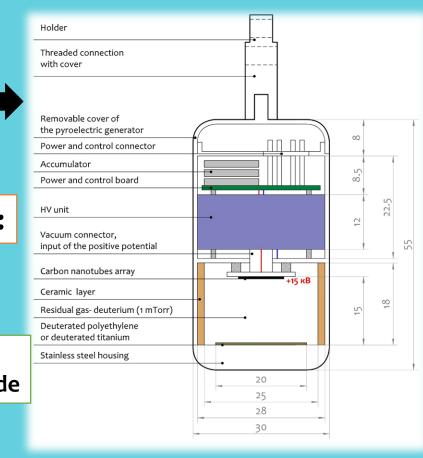


COMPACT NEUTRON GENERATORS FOR THE CALIBRATION OF LOW BACKGROUND EXPERIMENTS

A.S. Chepurnov^{1,2}, <u>M.B. Gromov¹</u>, V.Yu. Ionidi¹, A.A. Kaplii², M.A. Kirsanov³, A.A. Klenin², D. A. Kolesnikov^{2,6}, A.S. Kubankin^{2,4}, A.Yu. Maslenkina³, A.N. Oleinik^{2,5}, D.A. Selivanova³, A.V. Shchagin^{2,6}


¹ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
 ² Laboratory of Radiation Physics, Belgorod National State University
 ³ National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
 ⁴ Lebedev Physical Institute
 ⁵ John Adams Institute at Royal Holloway, University of London
 ⁶ Kharkov Institute of Physics and Technology

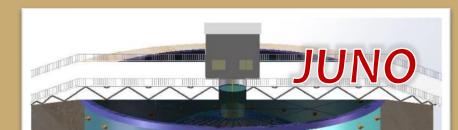
E-mail: gromov@physics.msu.ru, aschepurnov@yandex.ru, kubankin@bsu.edu.ru



ABSTRACT

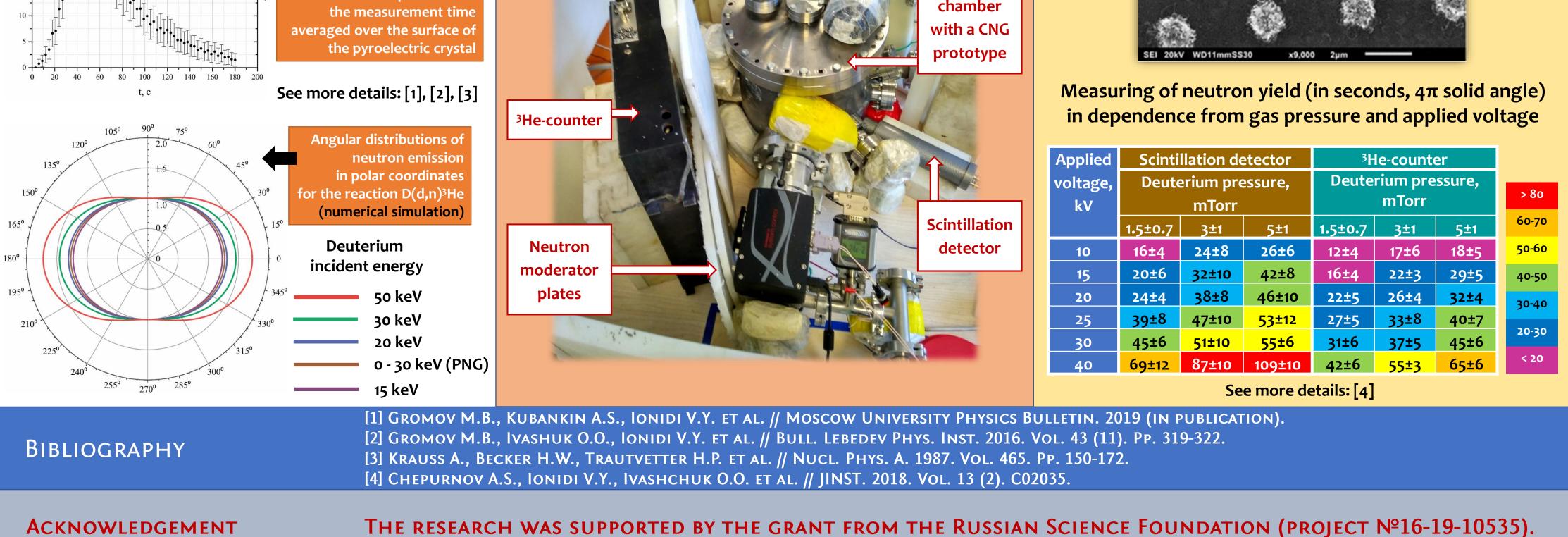
In the coming years, the compact monoenergetic neutron generators (CNG) producing up to 10⁴ n/s may become an alternative to the standard neutron sources based on radioactive isotopes for the calibrations of neutrino and dark matter detectors. Such neutron generators have a typical size of about several centimetres, they may be manufactured using low-background materials and require only low voltage power supply for operation. We discuss the advantages and disadvantages of two types of the compact neutron generators, namely a pyroelectric neutron source and a source based on the carbon nanotubes. Also the results of the technical analysis of the possibilities to apply such sources for the calibration of low-background experiments are given, the variants of the internal device design are shown and the full-size compact neutron generator prototype are presented.

CNG TYPES: PNG AND HVNG



ULTRA LOW-BACKGROUND EXPERIMENTS IN NEUTRINO AND DARK MATTER PHYSICS

CNG SPECIFICATION


based on features of the low-background detectors and their calibration systems

Borexino Experiment Laboratori Nazionali del Gran Sasso

<image/>					Characteristic size Height Diameter Housing material Fixing method Power supply method Neutron yield, n/s	< 70 mm (max 100 mm) 30-40 mm (max 50 mm) acrylic, stainless steel, teflon, ceramics (Al ₂ O ₃), quartz hang on a tether (s) or rod (s) wired or autonomous (battery 1-10 ⁴ (adjustable))
Solar neutrino physics Target: Liquid scintillator, 278 t		mass hierarchy I scintillator, 20 kt	Search for dark matter p Target: Underground LA		Wireless switching system	preferable	
CALIBRATION WITH CNG: ADVANTAGES					PROTOTYPES UNDER TEST		
 Non-radioactive source in off mode: Safety for experimenters and technical staff Safety for low background environment No papers Easy logistics 2. Cheap source 3. Adjustable neutron yield 4. Reusable 5. Stable neutron rate (doesn't decay) 				The vacuum-sealed metal ceramic bodies	Image: selection of the se		
ANISOTROPY OF THE PNG RADIATION		EXPERIMENTAL SETUP			NANOTUBE ION SOURCE		
$\frac{dN}{d\Omega}(\theta) = \frac{\overline{d\Omega}(\theta)}{\frac{dN}{d\Omega}(90^{\circ})} = \frac{\overline{d\Omega}(\theta)}{\frac{d\sigma}{d\Omega}(90^{\circ})}$ $\frac{d\sigma}{d\Omega}(\theta, E_d) = \text{const} \cdot (1 + a_2(E_d)P_2(\cos\theta) + a_4(E_d)P_4(\cos\theta)),$ where $P_2(\cos\theta), P_4(\cos\theta)$ – Legendre polynomials.	$(E_d) = k_1(1 - e^{-k_2 E_d}), \text{ where}$ $k_1 = 0.77564, k_2 = 0.01384;$ $a_4(E_d) = k_3 + k_4 E_d, \text{ where}$ $a = -0.01495, k_4 = 0.00053.$ $\widetilde{\frac{dN}{d\Omega}}(\theta) = \frac{\sum_i \frac{\widetilde{dN}}{d\Omega}(\theta, E_d^i)E_d^i}{\sum_i E_d^i}$ The dependence of the maximum value of the formed potential on the measurement time.	Vacuum gauge	<image/>	Vacuum chamber	as an io	<section-header></section-header>	

