The measurement of liquid scintillator nonlinear response and intrinsic energy resolution

Andrey Formozov * on behalf of JUNO collaboration

*) Dipartimento di Fisica, Università degli Studi e INFN, Milan, Italy; Lomonosov Moscow State University, Moscow, Russia; Joint Institute for Nuclear Research, Dubna, Russia

Email: andrey.formozov@mi.infn.it

Motivation

- The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multipurpose underground liquid scintillator detector, with a primary physics goal to determine the neutrino Mass Hierarchy.
- < 1 % uncertainty on the energy scale and 3 % at 1 MeV resolution requirement for the Mass Hierarchy determination in JUNO
- Intrinsic energy resolution was never yet robustly measured for liquid organic • scintillators

4938 ± 39.6

526.7 ± 23.3

 0.2156 ± 0.0004

0.4202 ± 0.0021

 -4.625 ± 0.170

0.07439 ± 0.00401 8.144 ± 0.033

-0.04475 ± 0.00042

0.208 H

p0

p1

p2

. рЗ

p4

p5 p6

p7

ICPPA-2018 October 22 - 26 Moscow, Russia

Data acquisition strategy

Scatter plot for coincidence events (one and multi-compto

. MeV

one comptor

two comptons 5%,10% resolutio 5%,10% resolution

Stability control and calibrations

- · Instability of PMT and HPGe were controlled and the scales were corrected.
- With PMT calibration v_{g} term was measured.
- v_{A} 3-4 σ differs from zero
- For a precise kB measurement and a wider analysis range the resolution of DAQ system must be increased.
- An improvement of light collection (from 450 p.e. toward 1500 p.e.) is necessary to increase a precision of resolution measurement and to reduce contribution of v_{p} into v_{A} for successful v_{int} extraction.

PMT linearity 2 % @ 1.5 V from specification

Analysis range 36.5 – 63.5 keV